CNN中减少网络的参数的三个思想】的更多相关文章

CNN中减少网络的参数的三个思想: 1) 局部连接(Local Connectivity) 2) 权值共享(Shared Weights) 3) 池化(Pooling) 局部连接 局部连接是相对于全连接来说的.全连接示意图如下: 比如说,输入图像为1000*1000大小,即输入层有1000*1000=10^6维,若隐含层与输入层的数目一样,也有10^6个,则输入层到隐含层的全连接参数个数为10^6 * 10^6=10^12,数目非常之大,基本很难训练. 一般认为人对外界的认知是从局部到全局的,而…
https://blog.csdn.net/caroline_wendy/article/details/80494120 Gluon是MXNet的高层封装,网络设计简单易用,与Keras类似.随着深度学习技术的普及,类似于Gluon这种,高层封装的深度学习框架,被越来越多的开发者接受和使用. 在开发深度学习算法时,必然会涉及到网络(symbol)和参数(params)的存储与加载,Gluon模型的存取接口,与MXNet略有不同.在MXNet体系中,网络与参数是分离的,这样的设计,有利于迁移学习…
HALCON中存在两类基本变量:图像变量(iconic data)和控制变量(control data),其中图像变量包括image, region和XLD contours,控制变量包括integers, strings, handles等. 详细内容可参照quick_guide文档2.1.2节 Parameters and Data Structures,该文档在安装目录下的doc\pdf文件夹中. HALCON算子中的四种参数被三个冒号依次隔开:图像输入参数,图像输出参数,控制输入参数,控…
1. python 中 axis 参数直觉解释 网络上的解释很多,有的还带图带箭头.但在高维下是画不出什么箭头的.这里阐述了 axis 参数最简洁的解释. 假设我们有矩阵a, 它的shape是(4, 3), 如下: import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # a.shape = (4, 3) 要做如下不同维度求和操作: # keepdims=True 保持了结果维度 s0 =…
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由forrestlin发表于云+社区专栏 导语:转置卷积层(Transpose Convolution Layer)又称反卷积层或分数卷积层,在最近提出的卷积神经网络中越来越常见了,特别是在对抗生成神经网络(GAN)中,生成器网络中上采样部分就出现了转置卷积层,用于恢复减少的维数.那么,转置卷积层和正卷积层的关系和区别是什么呢,转置卷积层实现过程又是什么样的呢,笔者根据最近的预研项目总结出本文. 1. 卷积层和全连接层 在CNN提出…
局部连接与权值共享 下图是一个很经典的图示,左边是全连接,右边是局部连接. 对于一个1000 × 1000的输入图像而言,如果下一个隐藏层的神经元数目为10^6个,采用全连接则有1000 × 1000 × 10^6 = 10^12个权值参数,如此数目巨大的参数几乎难以训练:而采用局部连接,隐藏层的每个神经元仅与图像中10 × 10的局部图像相连接,那么此时的权值参数数量为10 × 10 × 10^6 = 10^8,将直接减少4个数量级. 尽管减少了几个数量级,但参数数量依然较多.能不能再进一步减…
1. 基础知识 1.1 MTU   一个网络接口的 MTU 是它一次所能传输的最大数据块的大小.任何超过MTU的数据块都会在传输前分成小的传输单元.MTU 有两个测量层次:网络层和链路层.比如,网络层上标准的因特网 MTU 是 1500 bytes,而在连接层上是 1518 字节.没有特别说的时候,往往指的是网络层的MTU. 要增加一个网络接口 MTU 的常见原因是增加高速因特网的吞吐量.标准因特网 MTU 使用 1500byte是为了和 10M 和 100M 网络后向兼容,但是,在目前1G和…
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN的存在是为了解决两个主要问题: 1. 权值太多.这个随便一篇博文都能解释 2. 语义理解.全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构.换句话说,打乱图像像素的输入顺序,结果不变. 然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的.这一点很简…
AlexNet的基本结构 Alexnet是由5个卷积层和三个全连接层组成,一共8个权重层(池化层不是权重层因为其没有参数),其中ReLU激活函数作用在每个卷积层和全连接层上,在第一个卷积层和第二个卷积层后面连接一个局部响应规范化层,最大池化层作用在第一个卷积层,第二个卷积层和第五个卷积层的输出上. ReLU 在AlexNet结构中抛弃了传统的's'形激活函数,而是选择了修正的线性单元作为激活函数也就是relu传统的's'形激活函数有f(x)=1/(1+e-x),f(x)=tanh(x),其中si…
CNN中,1X1卷积核到底有什么作用呢? https://www.jianshu.com/p/ba51f8c6e348 Question: 从NIN 到Googlenet mrsa net 都是用了这个,为什么呢? 发现很多网络使用了1X1卷积核,这能起到什么作用呢?另外我一直觉得,1X1卷积核就是对输入的一个比例缩放,因为1X1卷积核只有一个参数,这个核在输入上滑动,就相当于给输入数据乘以一个系数.不知道我理解的是否正确. Answer [ruirui_ICT]:我来说说我的理解,我认为1×1…