#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 多元线性回归的模型: #-----------…
问题描述:m examples : (x(1),y(1)), (x(2),y(2)),..., (x(m),y(m)) and n features; 计算方法:θ = (XTX)-1XTy; 计算过程: (1) x(i) = [ x0(i)  x1(i) ...  xn(i) ] 为列矩阵: (2)design matrix: X = [ (x(1))T (x(2))T (x(3))T ... (x(n))T ] (3)compute with the format θ = (XTX)-1XT…
Content: 1. Linear Regression 1.1 Linear Regression with one variable 1.1.1 Gradient descent algorithm 1.2 Linear Regression with multiple variable 1.2.1 Feature Scaling 1.2.2 Features and polynomial regression 1.2.3 Normal equation 1.2.4 Probalilist…
1. 多元线性回归定义 多元线性回归也被称为多元线性回归. 我们现在介绍方程的符号,我们可以有任意数量的输入变量. 这些多个特征的假设函数的多变量形式如下: hθ(x)=θ0+θ1x1+θ2x2+θ3x3+⋯+θnxn 为了开发这个功能,我们可以想一想,θ0作为房子的基本价格,θ1每平方米的价格,θ2每层楼的价格,等X1将在房子的平方米数,x2楼层数,等等. 利用矩阵乘法的定义,我们的多变量假设函数可以简洁地表示为: 这是对一个训练例子的假设函数的矢量化. 备注:为了方便的原因,在这个过程中我们…
一.前述 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. 二.相关概念和安装 TensorFlow中的计算可以表示为一个有向图(DirectedGraph)或者称计算图(ComputationGraph)其中每一…
前情回顾 [第二天100天搞定机器学习|Day2简单线性回归分析][1],我们学习了简单线性回归分析,这个模型非常简单,很容易理解.实现方式是sklearn中的LinearRegression,我们也学习了LinearRegression的四个参数,fit_intercept.normalize.copy_X.n_jobs.然后介绍了LinearRegression的几个用法,fit(X,y).predict(X).score(X,y).最后学习了matplotlib.pyplot将训练集结果和…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# #下面这个概念对理解机器学习非常有帮助,但是我…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 多层神经网络模型: , <补充>:…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 神经网络的类型:感知机(单层),多层神经网络:…
#对coursera上Andrew Ng老师开的机器学习课程的笔记和心得: #注:此笔记是我自己认为本节课里比较重要.难理解或容易忘记的内容并做了些补充,并非是课堂详细笔记和要点: #标记为<补充>的是我自己加的内容而非课堂内容,参考文献列于文末.博主能力有限,若有错误,恳请指正: #---------------------------------------------------------------------------------# 这一周的内容是机器学习介绍和梯度下降法.作为入…