pytorch中torch.narrow()函数】的更多相关文章

torch.narrow(input, dim, start, length) → Tensor Returns a new tensor that is a narrowed version of input tensor. The dimension dim is input from start to start +length. The returned tensor and input tensor share the same underlying storage. Paramete…
官方文档 torch.matmul() 函数几乎可以用于所有矩阵/向量相乘的情况,其乘法规则视参与乘法的两个张量的维度而定. 关于 PyTorch 中的其他乘法函数可以看这篇博文,有助于下面各种乘法的理解. torch.matmul() 将两个张量相乘划分成了五种情形:一维 × 一维.二维 × 二维.一维 × 二维.二维 × 一维.涉及到三维及三维以上维度的张量的乘法. 以下是五种情形的详细解释: 如果两个张量都是一维的,即 torch.Size([n]) ,此时返回两个向量的点积.作用与 to…
numpy.expand_dims(a, axis) Expand the shape of an array. Insert a new axis that will appear at the axis position in the expanded array shape. Parameters: a : array_like Input array. axis : int Position in the expanded axes where the new axis is place…
分类问题中,交叉熵函数是比较常用也是比较基础的损失函数,原来就是了解,但一直搞不懂他是怎么来的?为什么交叉熵能够表征真实样本标签和预测概率之间的差值?趁着这次学习把这些概念系统学习了一下. 首先说起交叉熵,脑子里就会出现这个东西: 随后我们脑子里可能还会出现Sigmoid()这个函数: pytorch中的CrossEntropyLoss()函数实际就是先把输出结果进行sigmoid,随后再放到传统的交叉熵函数中,就会得到结果. 那我们就先从sigmoid开始说起,我们知道sigmoid的作用其实…
backward函数 官方定义: torch.autograd.backward(tensors, grad_tensors=None, retain_graph=None, create_graph=False, grad_variables=None) Computes the sum of gradients of given tensors w.r.t. graph leaves.The graph is differentiated using the chain rule. If a…
主要是参考这里,写的很好PyTorch 入门实战(四)--利用Torch.nn构建卷积神经网络 卷积层nn.Con2d() 常用参数 in_channels:输入通道数 out_channels:输出通道数 kernel_size:滤波器(卷积核)大小,宽和高相等的卷积核可以用一个数字表示,例如kernel_size=3;否则用不同数字表示,例如kernel_size=(5,3) stride : 表示滤波器滑动的步长 padding:是否进行零填充,padding=0表示四周不进行零填充,pa…
一.view函数 代码: a=torch.randn(,,,) b = a.view(,-) print(b.size()) 输出: torch.Size([, ]) 解释: 其中参数-1表示剩下的值的个数一起构成一个维度. 如上例中,第一个参数1将第一个维度的大小设定成1,后一个-1就是说第二个维度的大小=元素总数目/第一个维度的大小,此例中为3*4*5*7/1=420. 代码: a=torch.randn(3,4,5,7) d = a.view(a.size(),a.size(),-) e=…
原因:保存下来的模型和参数不能在没有类定义时直接使用. Pytorch使用Pickle来处理保存/加载模型,这个问题实际上是Pickle的问题,而不是Pytorch. 解决方法也非常简单,只需显式地导入类定义.即将包含类定义的文件复制粘贴到与要运行的文件同一文件夹下,再import Class! 但是,在实际过程中,我们采取import Class的方法没起到作用,而直接在要运行的文件上复制类定义是一种可行的方法.…
scatter() 和 scatter_() 的作用是一样的,只不过 scatter() 不会直接修改原来的 Tensor,而 scatter_() 会 PyTorch 中,一般函数加下划线代表直接在原来的 Tensor 上修改 scatter(dim, index, src) 的参数有 3 个 dim:沿着哪个维度进行索引 index:用来 scatter 的元素索引 src:用来 scatter 的源元素,可以是一个标量或一个张量 这个 scatter  可以理解成放置元素或者修改元素 简单…
Pytorch中randn和rand函数的用法 randn torch.randn(*sizes, out=None) → Tensor 返回一个包含了从标准正态分布中抽取的一组随机数的张量 size:张量的形状, out:结果张量.(目前还没有看到使用这个参数的例子) rand也差不多其实: torch.rand(*sizes, out=None) → Tensor 但是它是[0,1)之间的均匀分布 其他一些分布 离散正态分布 torch.normal(means, std, out=None…