UFLDL(Unsupervised Feature Learning and Deep Learning)Tutorial 是由 Stanford 大学的 Andrew Ng 教授及其团队编写的一套教程,内容深入浅出,有很强的实用性,学习起来,让人有种酣畅淋漓的感觉.邓侃博士于今年 2 月 20 日起,在新浪微博上召集志愿者对该教程进行翻译,并于 4 月 8 日全部完成,非常感谢所有参与者的辛勤劳动.本系列文章主要是对这套教程资料的整理,部分内容加入了自己的一些理解和注释. 第一篇  稀疏自编…
来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b…
http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by A…
from:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning…
by Jason Brownlee on December 20, 2017 in Better Deep Learning Transfer learning is a machine learning method where a model developed for a task is reused as the starting point for a model on a second task. It is a popular approach in deep learning w…
7.27 暑假开始后,稍有时间,“搞完”金融项目,便开始跑跑 Deep Learning的程序 Hinton 在Nature上文章的代码 跑了3天 也没跑完 后来Debug 把batch 从200改到20 勉强跑出结果 后来开始看 文章等  感觉晕晕乎乎 又翻到:Deep Learning Tutorials 装Theano等,但是python 代码 Debug真是好生恶心 再后来翻到 UFLDL,看着有Exercise 便做了起来. 用了5天刷了9个Exercises. 大概年后吧,在微博上看…
from:http://blog.sciencenet.cn/blog-830496-679604.html 深度学习(Deep Learning,DL)的相关资料总结 有人认为DL是人工智能的一场革命,貌似很NB.要好好学学. 0    第一人(提出者)     好像是由加拿大多伦多大学计算机系(Department of Computer Science ,University of Toronto) 的教授Geoffrey E. Hinton于2006年提出.    其个人网站是:    …
Adit Deshpande CS Undergrad at UCLA ('19) Blog About The 9 Deep Learning Papers You Need To Know About (Understanding CNNs Part 3) Introduction Link to Part 1Link to Part 2 In this post, we’ll go into summarizing a lot of the new and important develo…
首先为什么会有Deep learning,我们得到一个结论就是Deep learning需要多层来获得更抽象的特征表达. 1.Deep learning与Neural Network 深度学习是机器学习研究中的一个新的领域,其动机在于建立.模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本.深度学习是无监督学习的一种. 深度学习的概念源于人工神经网络的研究.含多隐层的多层感知器就是一种深度学习结构.深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现…
Mutiple-Image SSR 关键的技术imformation fusion 1. 将单一场景的多图像经过Resnet, 其中每张图片的维度变为了输入的两倍.同时,这些输入的单一场景的多图像进行图像配准(image registration)来确定图像之间的 子像素的位移(位移值乘以2以适配于Resnet的输出) 2. 经过Resnet的结果与子像素移位一起使用中值移位和加法方法组成初始的高分率图像,这时候维度再次增加,为原来的4倍. 3. 初始的高分辨率图像再经过迭代的EvoIM过程得到…