ndarray】的更多相关文章

概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在…
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 二.ndarray 是什么 ndarray 是一个多维的数组对象,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点. ndarray 的一个特点是同构:即其中所有元素的类型必须相同. 三.ndarray 的创建 array() 函数 最简单的方法, 使用 NumPy 提供的…
1. ndarray对象 ndarray是numpy中的一个N维数组对象,可以进行矢量算术运算,它是一个通用的同构数据多维容器,即其中的所有元素必须是相同类型的. 可以使用array函数创建数组,每个数组都有一个shape(一个表示各维度大小的元组)和一个dtype(一个用于说明数组数据类型的对象). 使用zeros和ones函数可以分别创建数据全0或全1的数组. numpy.ones(shape, dtype=None,order='C'):其中shape表示返回数组的形状:dtype表示数组…
什么是Numpy的ndarray 首先,Numpy的核心是ndarray. 然后,ndarray本质是数组,其不同于一般的数组,或者Python 的list的地方在于它可以有N 维(dimentions),也可简单理解为数组里面嵌套数组. 最后,Numpy为ndarray提供了便利的操作函数,而且性能优越,完爆Python 的list,因此在数值计算,机器学习,人工智能,神经网络等领域广泛应用. Numpy几乎是Python 生态系统的数值计算的基石,例如Scipy,Pandas,Scikit-…
使用ndarray数据时,如果希望知道数据的类型和维数,可以按照以下方法: Xxx.dtype  #xxx表示一个ndarray类型的变量,返回ndarray的数据类型 Xxx.shape  #xxx表示一个ndarray类型的变量,返回ndarray的数据维数 转载请保留 http://www.cnblogs.com/lion-zheng/…
1.使用array()函数创建数组 参数可以为:单层或嵌套列表:嵌套元组或元组列表:元组或列表组成的列表 # 导入numpy库 import numpy as np # 由单层列表创建 a = np.array([1, 2, 3]) print(a) [1 2 3] # 由嵌套列表创建 b = np.array([[1.3, 2.4], [0.3, 4.1]]) print(b) [[1.3 2.4] [0.3 4.1]] # 由嵌套元组创建 c = np.array((("p", &…
dtype(数据类型)是一个特殊的对象,它含有ndarray将一块内存解释为特定数据类型所需的信息 In [18]: sim1 = np.array([1,2,3],dtype=np.float64) In [19]: sim2 = np.array([1,2,3],dtype=np.float32) In [20]: sim1.dtype Out[20]: dtype('float64') In [21]: sim2.dtype Out[21]: dtype('float32') dtype是…
Numpy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器,是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的. 创建数组最简单的方法就是array函数,它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的Numpy数组. 以一个列表为例: In [2]: import numpy as np In [3]: simple = [1,2.3,4,5] In [4]: arr = np.array(simple) I…
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 ndarray 对象的内部机理 在前面的内容中,我们已经详细讲述了 ndarray 的使用,在本章的开始部分,我们来聊一聊 ndarray 的内部机理,以便更好的理解后续的内容. 1.ndarray 的组成 ndarray 与数组不同,它不仅仅包含数据信息,还包括其他描述信息.ndarray 内部由以下内容组成: 数据指针:一个…
1.NumPy库 NumPy = Numerical Python 是高性能科学计算和数据分析的基础库. pandas库充分借鉴了NumPy的相关概念,先行掌握NumPy库的用法,才能把pandas的用处发挥到极致. NumPy库是Numeric和Numarray的一个整合库. NumPy是开源项目,使用BSD许可证. NumPy是大多数Python发行版的基础库,也可自行安装. # NumPy库导入方法import numpy as np 2.ndarray对象 整个NumPy库的基础是nda…