一. 引言 如何从一副图片中找到车牌? 这是机器视觉的一个应用. 理所当然地, 思考的角度是从车牌本身的信息入手, 为了讨论方便, 下面均以长窄型蓝白车牌为例. 下图就是这样一张车牌的基本信息. 一眼看过去, 可以得到的信息有: 长宽比 - 3.14, 字符数 - 7, 第一个字符是汉字, 第二个字符是字母, 之后为5个字母/数字混合等距排列. 同时还可以大致了解到, 一个清晰的车牌应该拥有足够多的边缘信息, 换句话说, 边缘信息足够密集地聚集在一个3.14:1的矩形中. 所以今天介绍的算法,…
关于APIT定位算法的讨论 [摘要]   无线传感器网络节点定位机制的研究中,基于距离无关的定位技术得到快速发展,其中基于重叠区域的APIT定位技术在实际环境中的定位精度高,被广泛研究和应用. [关键词] 无线传感器网络:定位算法:APIT: [正文] 在传感网络中的许多应用中,用户一般都会关心一个重要问题,即特定时间发生的具体位置或区域.例如,目标跟踪,入侵检测,环境监控等,若不知道传感器自身的位置,感知的数据是没有意义的.因此,传感器网络及诶单必须知道自身所在的位置,才能够有效地说明被检测物…
转载自Jiaxing / 2014年2月22日 基本原理 Trilateration(三边测量)是一种常用的定位算法: 已知三点位置 (x1, y1), (x2, y2), (x3, y3) 已知未知点 (x0, y0) 到三点距离 d1, d2, d3 以 d1, d2, d3 为半径作三个圆,根据毕达哥拉斯定理,得出交点即未知点的位置计算公式: ( x1 - x0 )2 + ( y1 - y0 )2 = d12 ( x2 - x0 )2 + ( y2 - y0 )2 = d22 ( x3 -…
转载自:https://blog.csdn.net/baidu_38197452/article/details/77115935 基于LED的室内定位算法大致可以分为四类: 1. 几何测量法 这种方法需要估计接收端到己知LED灯的几何关系(距离或角度信息等),再通过计算获取待定位点的位置坐标.根据几何关系获取的信息,-般有RSS三边定位.AOA角度定位和TDOA双曲线定位等. 2. 场景分析法 送类定位算法又称为指纹定位法它通过分析场景中的特征来估计终端的坐标.一般分为两个阶段,离线数据库建立…
目前基于麦克风阵列的声源定位方法大致可以分为三类:基于最大输出功率的可控波束形成技术.基于高分辨率谱图估计技术和基于声音时间差(time-delay estimation,TDE)的声源定位技术. 基于TDE的算法核心在于对传播时延的准确估计,一般通过对麦克风间信号做互相关处理得到.进一步获得声源位置信息,可以通过简单的延时求和.几何计算或是直接利用互相关结果进行可控功率响应搜索等方法.这类算法实现相对简单,运算量小,便于实时处理,因此在实际中运用最广. GCC-PHAT 基于广义互相关函数的时…
在各种伪距定位算法中,最小二乘法是一种比较简单而广泛的方法,该算法可以分为以下几步: 1.准备数据与设置初始值 这里准备数据,主要是对于各颗可见卫星,收集到它们在同一时刻的伪距测量值,计算测量值的各项偏差.误差成分的校正量,然后计算出误差校正后的伪距测量值,这里假设伪距为理想距离加上随机高斯误差.设置初始值,假设大概知道位置坐标,则设定其为初始值,也可根据上一次定位结果设定:若什么都不了解,那么初值设置为0,只不过多几次迭代过程罢了. 2.非线性方程组线性化(不详细解释,就是得到雅克比矩阵).…
1. SIFT算法中一些符号的说明 $I(x,y)$表示原图像. $G(x,y,\sigma)$表示高斯滤波器,其中$G(x,y,\sigma) = \frac{1}{2\pi\sigma^2}exp(-(x^2+y^2)/2\sigma^2)$. $L(x,y,\sigma)$表示由一个高斯滤波器与原图像卷积而生成的图像,即$L(x,y,\sigma) = G(x,y,\sigma)\otimes I(x,y)$.一系列的$\sigma_i$,则可以生成一系列的$L(x,y,\sigma_i)…
Canny算法是边缘检测的一个经典算法,比单纯用一些微分算子来检测的效果要好很多,其优势有以下几点: 边缘误检与漏检率低. 边缘定位准确,且边界较细. 自带一定的滤噪功能,或者说,对噪声的敏感度要比单纯算子低. 具有多个可调整参数,可影响算法的时间与时效. 但是Canny相比单纯算子来说计算量偏大,下面简单介绍算法的过程. 图像去噪: 这一步不是必须的,一般噪声少的图,让Canny自己应付就行.若噪声较多,一般采用高斯滤波.滤波后,噪声灰度下降,对边缘的影响 小于噪点. 获取梯度强度与方向: 用…
mser 的全称:Maximally Stable Extremal Regions 第一次听说这个算法时,是来自当时部门的一个同事, 提及到他的项目用它来做文字区域的定位,对这个算法做了一些优化. 也就是中文车牌识别开源项目EasyPR的作者liuruoze,刘兄. 自那时起就有一块石头没放下,想要找个时间好好理理这个算法. 学习一些它的一些思路. 因为一般我学习算法的思路:3个做法, 第一步,编写demo示例. 第二步,进行算法移植或效果改进. 第三步,进行算法性能优化. 然后在这三个过程中…
调试的过程太麻烦了,因此打算详细解释一下每步的含义,很多地方懂了之后发现其实很简单,但是学起来却发现很多地方无从下手,因为资料太少了,真的都是不断踩坑一点一点摸索出来的,写以此文以便后人乘凉 此处将展示一个完全独立的节点的编写过程,如果读者打算移植算法到ROS平台可以稍作阅读,首先是在仿真环境下要产生可以订阅的激光雷达数据和地图数据,最开始尝试了fake系列包的定位,但是尝试了几天之后发现,fake定位是真的fake,使用的是fake_localization,没有输出任何可用的传感器数据,完全…