pandas 常用清洗数据(一)】的更多相关文章

1. df.head() Here we import pandas using the alias 'pd', then we read in our data. df.head - shows us the first rows and headers - it gives us an idea what to expect. df.tail - shows us the last rows 2. n []: df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2…
1.排序 DataFrame 按照Index排序 Series.order()进行排序,而DataFrame则用sort或者sort_index或者sort_values 2.去重, dt = dt.drop_duplicates(subset=['Date'], keep='first')…
数据源获取: https://www.kaggle.com/datasets 1. Look at the some basic stats for the ‘imdb_score’ column: data.imdb_score.describe() Select a column: data[‘movie_title’] Select the first rows of a column: data[‘duration’][:] Select multiple columns: data[[…
shift函数是对数据进行移动的操作,假如现在有一个DataFrame数据df,如下所示: index value1 A 0 B 1 C 2 D 3 那么如果执行以下代码: df.shift() 就会变成如下: index value1 A NaN B 0 C 1 D 2 看一下函数原型: DataFrame.shift(periods=1, freq=None, axis=0) 参数: periods:类型为int,表示移动的幅度,可以是正数,也可以是负数,默认值是1,1就表示移动一次,注意这…
diff函数是用来将数据进行某种移动之后与原数据进行比较得出的差异数据,举个例子,现在有一个DataFrame类型的数据df,如下: index value1 A 0 B 1 C 2 D 3 如果执行: df.diff() 则会得到: index value1 A NaN B 1 C 1 D 1 怎么得到的呢,其实是经过了两个步骤,首先会执行: df.shift() 然后再将该数据与原数据做差,即: df.shift()-df 函数原型: DataFrame.diff(periods=1, ax…
import numpy as np import pandas as pd 数据加载 首先,我们需要将收集的数据加载到内存中,才能进行进一步的操作.pandas提供了非常多的读取数据的函数,分别应用在各种数据源环境中,我们常用的函数为: read_csv read_table read_sql q 1.1 加载csv数据 header 表标题,可以使用整形和或者整形列表来指定标题在哪一行,None是无标题,默认infer首行 sep 控制数据之间的分隔符号.read_csv方法,默认为逗号(,…
Python3 Pandas的DataFrame数据的增.删.改.查 一.DataFrame数据准备 增.删.改.查的方法有很多很多种,这里只展示出常用的几种. 参数inplace默认为False,只能在生成的新数据块中实现编辑效果.当inplace=True时执行内部编辑,不返回任何值,原数据发生改变. import numpy as np import pandas as pd #测试数据. df = pd.DataFrame(data = [[']],index = [1,2,3],col…
pandas常用函数整理,作为个人笔记. 仅标记函数大概用途做索引用,具体使用方式请参照pandas官方技术文档. 约定 from pandas import Series, DataFrame import pandas as pd import numpy as np 带.的为Series或者DataFrame对象的方法,只列举了部分关键字参数. 1.基础 .values 获取值,返回array对象 .index 获取(行)索引,返回索引对象 Series( index=) 创建Series…
Python读写excel的工具库很多,比如最耳熟能详的xlrd.xlwt,xlutils,openpyxl等.其中xlrd和xlwt库通常配合使用,一个用于读,一个用于写excel.xlutils结合xlrd可以达到修改excel文件目的.openpyxl可以对excel文件同时进行读写操作. 而说到数据预处理,pandas就体现除了它的强大之处,并且它还支持可读写多种文档格式,其中就包括对excel的读写.本文重点就是介绍pandas对excel数据集的预处理. 机器学习常用的模型对数据输入…
Pandas pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的. Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. pandas提供了大量能使我们快速便捷地处理数据的函数和方法. >>> from pandas import Series, DataFrame >>> import pandas as pd A.pandas 函数 说明 pd.isnull(series) pd.notnull(ser…