数据分析计算xgboost模块】的更多相关文章

一.安装xgboost方法 摘要:之前为了安装xgboost,少不了进入各种坑,但最终安装成功了!首先, 准备的工作:,下载mingw64,链接https://pan.baidu.com/s/1i5CHftb, 解压后把:/mingw64/bin路径添加到环境变量;,进入:/mingw64/bin中, 把mingw32-make.exe改为make.exe;成功后,在cmd下输入make, 可看到返回“make:***Notargets..........stop”的东东;,下载git,链接ht…
数据分析01 /数据分析之numpy模块 目录 数据分析01 /数据分析之numpy模块 1. numpy简介 2. numpy的创建 3. numpy的方法 4. numpy的常用属性 5. numpy的数据类型(数组元素的类型) 6. numpy的索引和切片操作 7. 变形reshape 8. 级联操作 9. 广播机制 10. 常用的聚合操作 11. 常用的数学函数 12. 常用的统计函数 13. 矩阵相关 数据分析:是把隐藏在一些看似杂乱无章的数据背后的信息提炼出来,总结出所研究对象的内在…
作为一个本科学数学专业,目前研究非线性物理领域的研究僧.用什么软件进行纯科学计算好,Fortran永远是第一位的:matlab虽然很强大,可以很容易的处理大量的大矩阵,但是求解我们的模型(有时可能是几万个方程,而且需要演化很长时间才能到达稳态)使用matlab计算是很慢的.Python相对matlab来说,在速度上处于Fortran与matlab中间. Python处理科学计算只是它很小的一部分功能.python是交互式解释语言,开源的,拥有大量的第三方模块,可以跨平台,网页爬虫,数据挖掘,数据…
Python的科学计算包设计到C语言代码的编译,采用pip的方式安装会出现错误. 一种简单的方式是采用的集成包,具体的步骤参考:https://www.continuum.io/downloads#_unix 独立安装的话,在ubuntu可以用apt-get包管理工具安装与编译好的包模块: $ sudo apt-get install python-numpy $ sudo apt-get install python-scipy $ sudo apt-get install python-ma…
Numpy Numpy(Numerical Python的简称)是高性能科学计算和数据分析的基础包.它是我们课程所介绍的其他高级工具的构建基础. 其部分功能如下: ndarray, 一个具有复杂广播能力的快速且节省空间的多维数组. 对于整组数据进行快速的运算,无需编写循环. 用于读写磁盘数据的工具以及用于操作内容映射文件的工具. 用于集成由C, C++等语言编写的代码的工具. Numpy本身并没有提供那么多高级的数据分析功能,理解Numpy数组以及面向数组的计算将有助于我们更加高效的使用pand…
数组函数 通用元素级数组函数通用函数(即ufunc)是一种对ndarray中的数据执行元素级的运算.我们可以将其看做是简单的函数(接收一个或多个参数,返回一个或者多个返回值). 常用一元ufunc: 函数 说明 abs 计算整数.浮点数的绝对值. aqrt 计算各元素的平方根.相当于arr ** 0.5 square 计算各元素的平方.相当于arr ** 2 sign 计算各元素的正负号,1(正数).0(零).-1(负数) ceil 计算各元素的celling值,即大于该值的最小整数. floo…
概述 量化中,我们经常会遇到各种量化指标的计算,对于zipline来说,也会对这部分计算进行处理,由于指标计算的通用性比较强,所以,zipline单独封装了 empyrical 这个模块,可以处理类似的计算,由于这个模块并不依赖其它zipline模块,我们可以在我么的项目中单独使用它. 安装 pip install empyrical 它会依赖安装 numpy, scipy, pandas 等模块 使用 导入 from empyrical import ( alpha, beta, alpha_…
模块1.数据基础 numpy 模块2.数值运算 scipy 模块3.符号运算 sympy 模块4.图形绘制 matplotlib…
numpy(numerical python)是python语言的一个扩展程序库,支持大量的维度数组和矩阵运算,此外也针对数组提供大量的数学函数库. 一.创建数组 1 使用array()创建 import numpy as np a = np.array([1,2,3,4,5]) #这是一个一维数组 a1 = np.array([[1,4,3],[4,5,6],[7,8,9.5]]) #这是一个二维数组 numpy默认数组的所有元素的类型是相同的,如果传进来的列表包含不同的类型,则自动统一为同一…
# 常规参数 booster gbtree 树模型做为基分类器(默认) gbliner 线性模型做为基分类器 silent silent=0时,不输出中间过程(默认) silent=1时,输出中间过程 nthread nthread=-1时,使用全部CPU进行并行运算(默认) nthread=1时,使用1个CPU进行运算. scale_pos_weight 正样本的权重,在二分类任务中,当正负样本比例失衡时,设置正样本的权重,模型效果更好.例如,当正负样本比例为1:10时,scale_pos_w…