[翻译] 扩张卷积 (Dilated Convolution)】的更多相关文章

英文原文: Dilated Convolution 简单来说,扩张卷积只是运用卷积到一个指定间隔的输入.按照这个定义,给定我们的输入是一个2维图片,扩张率 k=1 是通常的卷积,k=2 的意思是每个输入跳过一个像素,k=4 的意思是跳过 3 个像素.最好看看下面这些 k 值对应的图片. 下面的图片表示了在 2 维数据上的扩张卷积.红点表示输入到此例中的 3x3 滤波器的数据点,绿色区域表示这些输入中每一个所捕获的感受野 (receptive field). 感受野是一个在初始的输入上,通过每个输…
一.空洞卷积 空洞卷积是是为了解决基于FCN思想的语义分割中,输出图像的size要求和输入图像的size一致而需要upsample,但由于FCN中使用pooling操作来增大感受野同时降低分辨率,导致upsample无法还原由于pooling导致的一些细节信息的损失的问题而提出的.为了减小这种损失,自然需要移除pooling层,因此空洞卷积应运而生. 所谓空洞卷积,有一种理解就是在卷积核中注入空洞(即0),注入的空洞的数量由参数dilation决定,以 卷积核为例,dilation=2即在卷积核…
扩张卷积(Dilated convolutions)是另一种卷积操作,也叫做空洞卷积(Atrous convolution).相比于普通的卷积,相同的卷积核,空洞卷积能够拥有更大的感受野. 相同的卷积核,扩张卷积在计算的时候可以把卷积看成是按照一定值进行了扩张,以3*3的卷积核为例子,如果扩张系数为2的话,该卷积核在计算的时候就像是一个5*5的卷积核,如图所示: 图(a)可以看成是扩张系数为1的扩张卷积,起作用就跟普通的卷积一样,当扩张系数为2的时候,扩张卷积就编程图(b)的形式,但是实际计算的…
最近在阅读<Context Encoding for Semantic Segmentation>中看到应用了dilated convolutions. 扩张卷积与普通的卷积相比,除了卷积核的大小以外,还有一个扩张率(dilation rate)参数,主要用来表示扩张的大小.扩张卷积与普通卷积的相同点在于,卷积核的大小是一样的,在神经网络中即参数数量不变,区别在于扩张卷积具有更大的感受野.感受野是卷积核在图像上看到的大小,例如3×33×3卷积核的感受野大小为9. (a) 普通卷积,1-dila…
各种各样的卷积方式, 详细见 各种卷积的 gif 图 Convolution animations  Padding, strides Transposed convolution animations  No padding, no strides, transposed Dilated convolution animations Blue maps are inputs, and cyan maps are outputs.  No padding, no stride, dilat…
从最开始的卷积层,发展至今,卷积已不再是当初的卷积,而是一个研究方向.在反卷积这篇博客中,介绍了一些常见的卷积的关系,本篇博客就是要梳理这些有趣的卷积结构. 阅读本篇博客之前,建议将这篇博客结合在一起阅读,想必会有更深的理解.另外,不管是什么类型的卷积,我们都把它理解成一种运算操作. Group convolution Group convolution是最早应用在2012年Alexnet的双GPU架构模型中,相当于把channel这一维度均分到两个GPU,进行分组卷积.如图所示: 这篇论文是:…
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 恭喜你看到了本系列的第三篇!前面两篇博客分别介绍了基于循环的图神经网络和基于卷积的图神经网络,那么在本篇中,我们则主要关注在得到了各个结点的表示后,如何生成整个图的表示.其…
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 在上一篇博客中,我们简单介绍了基于循环图神经网络的两种重要模型,在本篇中,我们将着大量笔墨介绍图卷积神经网络中的卷积操作.接下来,我们将首先介绍一下图卷积神经网络的大概框架…
唉,真烦哪些炒概念的,把整个世界都给弄乱了. 这里说一下dilated convolution和atrous convolution. 这两种是一样的,至少keras源码中是一样的.在keras中调用也十分简单: 看到了没有,就是一个参数,又多了一个可以调整的参数,累啊. 就这样吧,唉,心疼哪些炒概念的.…
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 笔者最近看了一些图与图卷积神经网络的论文,深感其强大,但一些Survey或教程默认了读者对图神经网络背景知识的了解,对未学过信号处理的读者不太友好.同时,很多教程只讲是什么…
1. 卷积(convolution) 输出 y(n) 是作为在 x(k) 和 h(n−k)(反转和移位)重叠之下的样本和求出的. 考虑下面两个序列: x(n)=[3,11,7,0,−1,4,2],−3≤n≤3 h(n)=[2,3,0,−5,2,1],−1≤n≤4 求卷积 y(n)=x(n)⋆h(n) matlab 实现: 如果是任意无限长序列,不可以直接用 matlab 来计算卷积,matlab 内部实现了一个函数 conv 来计算两个有限长序列之间的卷积.conv 函数规定这两个序列都在 n=…
转置卷积Transposed Convolution 我们为卷积神经网络引入的层,包括卷积层和池层,通常会减小输入的宽度和高度,或者保持不变.然而,语义分割和生成对抗网络等应用程序需要预测每个像素的值,因此需要增加输入宽度和高度.转置卷积,也称为分步卷积或反卷积,就是为了达到这一目的. from mxnet import np, npx, init from mxnet.gluon import nn from d2l import mxnet as d2l npx.set_np() 1. Ba…
作者:桂. 时间:2017-03-07  22:33:37 链接:http://www.cnblogs.com/xingshansi/p/6517301.html 前言 信号时域.频域对应关系,及其DFT.FFT等变换内容,在之前的文章1.文章2中已经给出相关的理论推导以及代码实现,本文主要针对信号中常用的卷积进行介绍,内容主要包括: 1)卷积的物理意义: 2)卷积的直接实现: 3)卷积的FFT实现: 4)卷积的无延迟快速实现: 本文为自己的学习总结,内容多有参考他人,相关的参考文献名称最后一并…
目录 三大特征提取器 - RNN.CNN和Transformer 简介 循环神经网络RNN 传统RNN 长短期记忆网络(LSTM) 卷积神经网络CNN NLP界CNN模型的进化史 Transformer 3.1 多头注意力机制(Multi-Head Attention) 位置编码(Positional Encoding) 残差模块(Residual Block) Transformer小结 三大特征提取器 - RNN.CNN和Transformer 简介 近年来,深度学习在各个NLP任务中都取得…
一. 背景介绍 语义分割(Semantic Segmentation):对一张图片上的所有像素点进行分类,同一物体的不同实例不需要单独分割出来. 实例分割(Instance Segmentation):目标检测(比b-box更精确到边缘)和语义分割(标出同类不同个体)的结合. 全景分割(Panoramic Segmentation):语义分割和实例分割的结合,背景也要检测和分割. 图像分割是图像理解的重要基石,在自动驾驶.无人机.工业质检等应用中都有着举足轻重的地位.缺陷检测论文现在好多都是借助…
<深度学习基础> 卷积神经网络,循环神经网络,LSTM与GRU,梯度消失与梯度爆炸,激活函数,防止过拟合的方法,dropout,batch normalization,各类经典的网络结构,各类优化方法 1.卷积神经网络工作原理的直观解释 https://www.zhihu.com/question/39022858 简单来说,在一定意义上,训练CNN就是在训练每一个卷积层的滤波器.让这些滤波器组对特定的模式有高的激活能力,以达到CNN网络的分类/检测等目的. 2.卷积神经网络的复杂度分析 ht…
本文来自<DSFD: Dual Shot Face Detector>,时间线为2018年10月,是南理工Jian Li在腾讯优图实验室实习时候的作品.在WIDER FACE,FDDB上效果也超过了PyramidBox和SRN. 0 引言 最近在比赛上拿到最好成绩的人脸检测模型大致可以分成2类: 基于RPN的网络,这种网络是2阶段模型 基于SSD这种一次shot检测,直接预测边界框和置信度. 而一次shot的检测器因其高预测速度和简单的系统设计而更受青睐.不过分析下来,仍然有以下三个问题未完全…
论文:Scale-Aware Trident Networks for Object Detection 发表时间:2019 发表作者:(University of Chinese Academy of Sciences)Yuntao Chen, (TuSimple)Naiyan Wang 发表刊物/会议:ICCV 论文链接:论文链接 论文代码:代码链接 DetNet 这篇文章主要要解决的问题便是目标检测中最为棘手的scale variation问题.使用了非常简单干净的办法在标准的COCO b…
以最佳的101 layer的ResNet-DUC为基础,添加HDC,实验探究了几种变体: 无扩张卷积(no dilation):对于所有包含扩张卷积,设置r=1r=1 扩张卷积(dilation Conv ):对于所有包含扩张卷积,将2个block和为一组,设置第一个block的r=2r=2,第二个block的r=1r=1 Dilation-RF:对于res4bres4b包含了23个blocks,使用的r=2r=2,设置3个block一组,r=1,2,3r=1,2,3.对于最后两个block,设…
Dilated Convolutions,中文一般称为空洞卷积或者扩张卷积,是一种改进的图像卷积方法. 扩张卷积工作示意图如下: 图a是普通的卷积,感受野是3*3,相当于扩充dilation=0 图b是扩张卷积,感受野是7*7,dilation=2 图c是扩张卷积,感受野是15*15,dilation=4  扩张卷积中多了一个扩充率参数(dilation rate),用来控制扩张(空洞填充)的大小,扩充率参数越大,同等卷积核大小对应的感受野越大.扩充卷积对普通卷积的改进就是为了获得更大的感受野.…
译者注:本文翻译自斯坦福CS231n课程笔记ConvNet notes,由课程教师Andrej Karpathy授权进行翻译.本篇教程由杜客和猴子翻译完成,堃堃和李艺颖进行校对修改. 原文如下 内容列表: 结构概述 用来构建卷积神经网络的各种层 卷积层 汇聚层 归一化层 全连接层 将全连接层转化成卷积层 卷积神经网络的结构 层的排列规律 层的尺寸设置规律 案例学习(LeNet / AlexNet / ZFNet / GoogLeNet / VGGNet) 计算上的考量 拓展资源 卷积神经网络(C…
因果卷积(causal)与扩展卷积(dilated)之An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling author:gswycf 最近在看关于NLP(自然语言处理)方面的文章,(其实不是自己要看),anyway,看了一个“An Empirical Evaluation of Generic Convolutional and Recurrent Networ…
提出了模型和损失函数 论文名称:扩展卷积密集连接神经网络用于时域实时语音增强 论文代码:https://github.com/ashutosh620/DDAEC 引用:Pandey A, Wang D L. Densely connected neural network with dilated convolutions for real-time speech enhancement in the time domain[C]//ICASSP 2020-2020 IEEE Internati…
(一)卷积神经网络 卷积神经网络最早是由Lecun在1998年提出的. 卷积神经网络通畅使用的三个基本概念为: 1.局部视觉域: 2.权值共享: 3.池化操作. 在卷积神经网络中,局部接受域表明输入图像与隐藏神经元的连接方式.在图像处理操作中采用局部视觉域的原因是:图像中的像素并不是孤立存在的,每一个像素与它周围的像素都有着相互关联,而并不是与整幅图像的像素点相关,因此采用局部视觉接受域可以类似图像的此种特性. 另外,在图像数据中存在大量的冗余数据,因此在图像处理过程中需要对这些冗余数据进行处理…
注:博主是大四学生,翻译水平可能比不上研究人员的水平,博主会尽自己的力量为大家翻译这篇论文.翻译结果仅供参考,提供思路,翻译不足的地方博主会标注出来,请大家参照原文,请大家多多关照. 转载请务必注明出处,谢谢. 0. 译者序 题目翻译:基于内容感知生成模型的图像修复 介绍:这篇文章也被称作deepfill v1,作者的后续工作 "Free-Form Image Inpainting with Gated Convolution" 也被称为deepfill v2.两者最主要的区别是,v2…
deconv的其中一个用途是做upsampling,即增大图像尺寸. dilated convolution: dilated conv,中文可以叫做空洞卷积或者扩张卷积. 首先是诞生背景,在图像分割领域,图像输入到CNN(典型的网络比如FCN[3])中,FCN先像传统的CNN那样对图像做卷积再pooling,降低图像尺寸的同时增大感受野,但是由于图像分割预测是pixel-wise的输出,所以要将pooling后较小的图像尺寸upsampling到原始的图像尺寸进行预测(upsampling一般…
MIT Scene Parsing Benchmark简介 Scene parsing is to segment and parse an image into different image regions associated with semantic categories, such as sky, road, person, and bed. MIT Scene Parsing Benchmark (SceneParse150) provides a standard trainin…
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. _论文地址:https://arxiv.org/abs/1704.06857_ 应用于语义分割问题的深度学习技术综述 摘要 计算机视觉与机器学习研究者对图像语义分割问题越来越感兴趣.越来越多的应用场景需要精确且高效的分割技术,如自动驾驶.室内导航.甚至虚拟现实与增强现实等.这个需求与视觉相关的各个领域及应用场景下的深…
近期主要在学习语义分割相关方法,计划将arXiv上的这篇综述好好翻译下,目前已完成了一部分,但仅仅是尊重原文的直译,后续将继续完成剩余的部分,并对文中提及的多个方法给出自己的理解. 论文地址:https://arxiv.org/abs/1704.06857 应用于语义分割问题的深度学习技术综述 摘要 计算机视觉与机器学习研究者对图像语义分割问题越来越感兴趣.越来越多的应用场景需要精确且高效的分割技术,如自动驾驶.室内导航.甚至虚拟现实与增强现实等.这个需求与视觉相关的各个领域及应用场景下的深度学…
NLP进阶之(七)膨胀卷积神经网络1. Dilated Convolutions 膨胀卷积神经网络1.2 动态理解1.2.2 转置卷积动画1.2.3 理解2. Dilated Convolutions 优点3. 应用 理论来自Multi-scale context aggregation by dilated convolutions ICLR 2016作者将代码贡献于github针对语义分割问题 semantic segmentation,这里使用 dilated convolutions 得…