在第2篇里,介绍了jena的The general purpose rule engine(通用规则引擎)及其使用,本篇继续探究,如何自定义builtin. builtin介绍 先回顾builtin为何物,官方叫Builtin primitives,可以理解为内置函数.内置指令,可以返回true或者false用来检验rule是否匹配,官方包含如下的primitives Builtin Operations isLiteral(?x) notLiteral(?x) isFunctor(?x) no…
本章,介绍 基于jena的规则引擎实现推理,并通过两个例子介绍如何coding实现. 规则引擎概述 jena包含了一个通用的规则推理机,可以在RDFS和OWL推理机使用,也可以单独使用. 推理机支持在RDF图上推理,提供前向链.后向链和二者混合执行模式.包含RETE engine 和 one tabled datalog engine.可以通过GenericRuleReasoner来进行配置参数,使用各种推理引擎.要使用 GenericRuleReasoner,需要一个规则集来定义其行为. Ru…
通过例句介绍Sparql的使用 1 简介 SPARQL的定义,是一个递归的定义,为SPARQL Protocal and RDF Query Language,是W3C制定的RDF知识图谱标准查询语言,大部分的图数据库都支持SPARQL查询.SPARQL在语法上借鉴了SQL.SPARQL是针对RDF三元组进行查询,通过图匹配的方式获得需要查找的内容. 下面通过一个例子来说明SPARQL的查询语句的基本结构.这个例子可以在http://dbpedia.org/sparql中运行,获取结果. pre…
1 Protégé简介 Protégé是一个本体建模工具软件,由斯坦福大学基于java语言开发的,属于开放源代码软件.软件主要用于语义网中本体的构建和基于本体的知识应用,是本体构建的核心开发工具,最新版本为5.5.0(截至2019年7月). Protégé支持中文,能够实现实体关系的中文展示.如下图. 具体来说,Protégé具有以下功能. 类建模.Protégé提供了一个图形化用户界面来建模类(包括概念)和它们的属性以及关系. 实例编辑.根据创建的类型,Protégé会自动产生交互的形式,可以…
1 概述 D2RQ,含义是把关系型数据库当作虚拟的RDF图数据库进行访问.D2RQ平台是一个将关系型数据库当作虚拟的.只读的RDF图数据库进行访问的系统.提供了基于RDF访问关系数据库的内容,而无需复制这个数据库将其以RDF的形式进行保存.D2RQ有以下功能: 使用SPARQL查询非RDF数据库: 在Web上,将数据库内容当作链接数据进行访问: 以RDF形式创建一个自定义的数据库,加载成RDF存储: 使用Apache Jena API访问非RDF数据库的信息. D2RQ是一个开源软件,基于Apa…
IJCAI-TEMP:知识图谱上多跳推理的类型感知嵌入 论文地址: Type-aware Embeddings for Multi-Hop Reasoning over Knowledge Graphs IJCAI-TEMP:知识图谱上多跳推理的类型感知嵌入 摘要 1.引言 2.相关工作 2.1 查询嵌入(QE) 2.2 基于路径的方法 2.3 归纳式KGC 2.4 类型感知任务 3.背景 4.语义丰富嵌入 4.1 TER:类型感知的实体表示 4.2 TRR:类型感知的关系表示 4.2.1 St…
本文主要通过python实例讲解基于RDF和SPARQL的KBQA系统的构建.该项目可在python2和python3上运行通过. 注:KBQA即是我们通常所说的基于知识图谱的问答系统.这里简单构建的EasyKBQA,数据来源于网络,源码地址看下面补充说明. 目录: -流程原理 -实际过程 -程序运行 -补充说明 流程原理: 该问答系统可以解析输入的自然语言问句,主要运用REFO库的"对象正则表达式"匹配得到结果, 进而生成对应 SPARQL 查询语句,再通过API请求后台基于TDB知…
https://blog.csdn.net/u011801161/article/details/78833958 https://blog.csdn.net/baidu_15113429/article/details/82144731 RDF:单纯的三元组,没有本体概念,如果构建一个公司的知识图谱,公司的董事和中层以及普通员工都是员工,你在查找员工的时候,就需要把董事以及各个职位的人都查找出来. RDFS:会添加本体,例如员工下面有董事以及中层和普通员工,这样就能直接通过抽象的员工而不用访问…
https://zhuanlan.zhihu.com/p/32122644 看过之前两篇文章([1](为什么需要知识图谱?什么是知识图谱?——KG的前世今生), [2](语义网络,语义网,链接数据和知识图谱))的读者应该对RDF有了一个大致的认识和理解.本文将结合实例,对RDF和RDFS/OWL,这两种知识图谱基础技术作进一步的介绍.其实,RDF.RDFS/OWL是类语义网概念背后通用的基本技术,而知识图谱是其中最广为人知的概念. 一.知识图谱的基石:RDF RDF表现形式 RDF(Resour…
作者 | 平名 阿里服务端开发技术专家 导读:Kubernetes 作为云原生时代的“操作系统”,熟悉和使用它是每名用户的必备技能.本篇文章概述了容器服务 Kubernetes 的知识图谱,部分内容参考了网上的知识图谱,旨在帮助用户更好的了解 K8s 的相关知识. 概述 容器服务 Kubernetes 知识图谱,部分内容参考网上一知识图谱,更加结合阿里云容器服务. 原图 by 杨传胜 原图链接地址 https://www.processon.com/view/link/5ac64532e4b00…
K8s 学习者绝对不能错过的最全知识图谱(内含 58个知识点链接)   https://www.cnblogs.com/alisystemsoftware/p/11429164.html 需要加强学习呢. 作者 | 平名 阿里服务端开发技术专家 导读:Kubernetes 作为云原生时代的“操作系统”,熟悉和使用它是每名用户的必备技能.本篇文章概述了容器服务 Kubernetes 的知识图谱,部分内容参考了网上的知识图谱,旨在帮助用户更好的了解 K8s 的相关知识. 概述 容器服务 Kubern…
目录 分为两个部分,笔者看到的知识图谱在商业领域的应用,外加看到的一些算法框架与研究机构. 文章目录 @ 一.知识图谱商业应用 01 唯品金融大数据 02 PlantData知识图谱数据智能平台 03 拍拍贷图数据库技术 04 CN-DBpedia 05 OpenKG.CN--开放的中文知识图谱 06 楚辞 07 海致大数据 08 腾讯云星图 09 网感至察 10 慧科技术 - 商业AI(NLP + 品牌Logo识别) 二.相关科研机构与算法框架 2.1 复旦大学 Knowledge Works…
导读:Kubernetes 作为云原生时代的“操作系统”,熟悉和使用它是每名用户的必备技能.本篇文章概述了容器服务 Kubernetes 的知识图谱,部分内容参考了网上的知识图谱,旨在帮助用户更好的了解 K8s 的相关知识. 1.  概述 容器服务 Kubernetes 知识图谱,部分内容参考网上一知识图谱,更加结合阿里云容器服务. 原图来源:https://www.processon.com/view/link/5ac64532e4b00dc8a02f05eb#map 2. 链接和备注 类别…
一.什么是知识图谱 知识(Knowledge)可以理解为 精炼的数据,知识图谱(Knowledge Graph)即是对知识的图形化表示,本质上是一种大规模语义网络 (semantic network) – 富含实体(entity). 概念(concepts) 及其之间的各种语义关系 (semantic relationships),比如 知识图谱和人工智能: 知识图谱的理想状态: 给所有IOT设备和机器人都挂一个背景知识库,因为对于人类来说,对一个事物的理解取决于这个人关于事物的相关背景知识,对…
论文标题:Mask and Reason: Pre-Training Knowledge Graph Transformers for Complex Logical Queries 论文地址: https://arxiv.org/abs/2208.07638 论文会议: KDD 2022 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱Transformer 17.(2022.8.16)KDD-kgTransformer:复杂逻辑查询的预训练知识图谱…
知识图谱综述(2021.4) 论文地址:A Survey on Knowledge Graphs: Representation, Acquisition, and Applications 目录 知识图谱综述(2021.4) 摘要 1.简介 2.概述 3.知识表示学习(KRL) 3.1 表示空间 3.1.1 点空间 3.1.2 复向量空间 3.1.3 高斯分布 3.1.4 流形和群 3.2 评分函数 3.2.1 基于距离的评分函数 3.2.2 基于语义匹配的评分函数 3.3 编码模型 3.3.…
Atitit learn by need 需要的时候学与预先学习知识图谱路线图 1. 体系化是什么 架构 知识图谱路线图思维导图的重要性11.1. 体系就是架构21.2. 只见树木不见森林21.3. 知识图谱路线图的优点优点需要的21.4. 思维导图 大纲性 集成化22. 文字化>>表格化>>脚本化,可视化23. 如何体系化23.1. 分类,单根继承23.2. 一点带线,以线带面23.3. 纵向,横向抽象拓展23.4. 拓展和应用23.5. 以点带面,全方位网状  拓展33.6.…
Atitit 研发体系建立 数据存储与数据知识点体系知识图谱attilax 总结 分类具体知识点原理规范具体实现(oracle,mysql,mssql是否可以自己实现说明 数据库理论数据库的类型 数据库理论,网状,层次, 数据库理论树形数据库注册表,hashtable 数据库理论,kv数据库.hashtable 数据库理论Oodb 数据库理论nosql db 数据库理论隔离级别 数据库理论 数据库理论Er模型 数据库理论Acid数据库完整性 数据库理论关系模型 数据库理论   sql 数据库理论…
Atitit 知识图谱解决方案:提供完整知识体系架构的搜索与知识结果overview   知识图谱的表示和在搜索中的展1 提升Google搜索效果3 1.找到最想要的信息.3 2.提供最全面的摘要.4 3.让搜索更有深度和广度.4   互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web).在这个背景下,Google.百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Gr…
Atitti 知识图谱构建方法attilax 总结   1.1. 知识图谱schema构建(体系化)1 1.2. 纵向垂直拓展(向上抽象,向下属性拓展)2 1.3. 横向拓展2 1.4. 网拓展2 1.5. a) 推理2 1.6. c) 相关实体挖掘 2 2. other3 2.1. 面向站点的包装器(Site-specificWrapper)3 2.2. 5. 知识图谱的更新和维护3   a) 实体对齐  实体对齐(Object Alignment 各大搜索引擎公司普遍采用的方法是聚类.聚类的…
实体关系推理与知识图谱补全 Unsupervised Person Slot Filling based on Graph Mining 作者:Dian Yu, Heng Ji 机构:Computer Science Department, Rensselaer Polytechnic Institute 本文的任务为槽填充(Slot Filling),即从大规模的语料库中抽取给定实体(query)的被明确定义的属性(slot types)的值(slot fillers).对于此任务,本文叙述目…
一.前言 就IT而言,胖子哥算是老兵,可以去猝死的年纪,按照IT江湖猿龄的规矩,也算是到了耳顺之年:而就人工智能而言,胖子哥还是新人,很老的新人,深度学习.语音识别.人脸识别,知识图谱,逐个的学习了一遍,并在商业变现的项目中投入应用,语音识别.人脸识别和知识图谱.即使有十多年的技术底蕴,学起来也算颇费周章,用起来更是步步坎坷.实践过程中做了笔记,并且把内容整理成了系列课程2017年底份推出了<人工智能产品经理最佳实践>,2018年初推出了<知识图谱开发实战案例剖析>线下和线上的视频…
1. 通俗易懂解释知识图谱(Knowledge Graph) 2. 知识图谱-命名实体识别(NER)详解 3. 哈工大LTP解析 1. 前言 从一开始的Google搜索,到现在的聊天机器人.大数据风控.证券投资.智能医疗.自适应教育.推荐系统,无一不跟知识图谱相关.它在技术领域的热度也在逐年上升. 本文以通俗易懂的方式来讲解知识图谱相关的知识.尤其对从零开始搭建知识图谱过程当中需要经历的步骤以及每个阶段需要考虑的问题都给予了比较详细的解释. 知识图谱( Knowledge Graph)的概念由谷…
本文是笔者多年来积累和收集的知识技能图谱,小编极力推荐分享给身边的技术人儿,希望这份技术知识图谱能够帮助到每一位奋斗在技术路上的小伙伴. 下面是笔者多年来积累和收集的知识技能图谱,有的是笔者原创总结的最佳实践,有的是小伙伴们的分享,其中每个秘籍图谱里面的内容都是互联网高并发架构师应该了解和掌握的知识. 笔者索性把这些图谱收集在一起,并且归类便于查找和学习,希望能够帮助到每一位想成为架构师或者已经是架构师的小伙伴. 暂把标题定为:“史上最全的技术知识图谱秘籍”,暗含着笔者的一个小目标:想把更多的技…
社区小伙伴反馈在实践文章<使用图数据库 Nebula Graph 数据导入快速体验知识图谱 OwnThink>时,遇到了一些问题,Nebula Graph 将在本文对该文章中出现的问题进行 Debug. 报错信息:panic: yaml: line 14: mapping values are not allowed in this contex 使用 nebula-importer 时,报错: panic: yaml: line 14: mapping values are not allo…
从人工智能学科诞生之初起,自然语言处理(NLP)就是人工智能核心的研究问题之一.NLP的重要性是毋庸置疑的,它能够实现以自然语言交流为特征的高级人机交互,使机器能“阅读”所有以文字形式记录的人类知识,并提供各种高层智能服务的基础和关键技术. 目前在NLP领域最受瞩目的要数谷歌的NLP模型BERT(Bidirectional Encoder Representa-tions from Transformers),它在Trans-former的基础上,借助海量跨领域语料和超高计算能力,通过多任务预训…
kubernetes 1.发展历程 基础设施级服务infrastructure as a service 阿里云 平台设施级服务 platform as a service 新浪云 软件设施级服务 software as a service office365 Docker技术突飞猛进 一次构建,到处运行 容器的快速轻量 完整的生态环境 资源管理器 apache MESOS (分布式资源管理框架) 2019-5 twitter 剔除--> docker swarm(功能少) 2019-07 阿里…
介绍 我们正在定义一种新的机器学习方法,专注于一种新的范式 -- Data Fabric. 在上一篇文章中,我们对机器学习给出了新的定义: 机器学习是一种自动发现Data Fabric中隐藏的"洞察力"(insight)的过程,它使用的算法能够发现这些"洞察力"(insight),而无需专门为此编写程序,从而创建模型来解决特定(或多个)问题. 理解这一点的前提是我们创建了一个Data Fabric.对我来说,最好的工具就是Anzo,正如我之前提到的. 你可以使用An…
语义网的愿景活跃且良好,广泛应用于行业 语义网的愿景是「对计算机有意义」的数据网络(正如 Tim Berners Lee.James Hendler 和 Ora Lassila 在<科学美国人>发表的文章<The Semantic Web>所介绍的那样).ISWC 是共享这一愿景的研究人员和工程师组成的社区:他们通过发表研究论文的形式作出贡献,目的是让这一愿景成为现实.具体而言,语义网研究人员的方法是创建知识图谱,这种数据结构的实体由 URL 进行唯一标识,并使用 RDF 语言通过…
C#特性知识图谱-二.事件 二.事件 在事件驱动的软件系统中,符合某种预设条件的情形出现是,一个事件就会被触发. 2.1 事件三要素 事件源:激发事件的对象 事件信息:事件本身说携带的信息 事件响应者:响应时间的处理逻辑代码 示例: 2.2 事件的特点 一个事件源可以有多个响应者即一对多关联. 事件可以看成是一个多路委托变量,事件的响应方法则是被此多路委托变量所引用. 2.3 定义事件的方式 2.3.1 利用委托自定义事件 2.3.2 利用event自定义事件 2.4 event关键字的作用 事…