RNN-LSTM讲解-基于tensorflow实现】的更多相关文章

cnn卷积神经网络在前面已经有所了解了,目前博主也使用它进行了一个图像分类问题,基于kaggle里面的food-101进行的图像识别,识别率有点感人,基于数据集的关系,大致来说还可行.下面我就继续学习rnn神经网络. rnn神经网络(递归/循环神经网络)模式如下: 我们在处理文字等问题的时候,我们的输入会把上一个时间输出的数据作为下一个时间的输入数据进行处理.例如:我们有一段话,我们将其分词,得到t个数据,我们分别将每一个词传入到x0,x1....xt里面,当x0传入后,会得到一个结果h0,同时…
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为什么选取了这个模型? 3.模型的数据从哪里来? 4.模型的优化过程? 5.项目可以进一步提升的方向. 对于以比特币为首的数字货币近期的表现,只能用疯狂来形容.来自比特币交易平台的最新价格行情显示,就在此前一天,比特币盘中最高价格达到29838.5元,距离3万元大关仅有咫尺之遥.比特币最近火热的行情,…
简介 TensorFlow-Bitcoin-Robot:一个基于 TensorFlow LSTM 模型的 Bitcoin 价格预测机器人. 文章包括一下几个部分: 1.为什么要尝试做这个项目? 2.为什么选取了这个模型? 3.模型的数据从哪里来? 4.模型的优化过程? 5.项目可以进一步提升的方向. 对于以比特币为首的数字货币近期的表现,只能用疯狂来形容.来自比特币交易平台的最新价格行情显示,就在此前一天,比特币盘中最高价格达到29838.5元,距离3万元大关仅有咫尺之遥.比特币最近火热的行情,…
#RNN 循环神经网络 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data tf.set_random_seed(1) # set random seed # 导入数据 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) # hyperparameters lr = 0.001 # learning rate t…
1. 经常使用类 class tf.contrib.rnn.BasicLSTMCell BasicLSTMCell 是最简单的一个LSTM类.没有实现clipping,projection layer.peep-hole等一些LSTM的高级变种,仅作为一个主要的basicline结构存在,假设要使用这些高级变种,需用class tf.contrib.rnn.LSTMCell这个类. 使用方式: lstm = rnn.BasicLSTMCell(lstm_size, forget_bias=1.0…
RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一时刻隐藏层的状态向量). demo:单层全连接网络作为循环体的RNN 输入层维度:x 隐藏层维度:h 每个循环体的输入大小为:x+h 每个循环体的输出大小为:h 循环体的输出有两个用途: 下一时刻循环体的输入的一部分 经过另一个全连接神经网络,得到当前时刻的输出 序列长度 理论上RNN支持任意序列长…
用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 循环神经网络RNN相比传统的神经网络在处理序列化数据时更有优势,因为RNN能够将加入上(下)文信息进行考虑.一个简单的RNN如下图所示: 将这个循环展开得到下图: 上一时刻的状态会传递到下一时刻.这种链式特性决定了RNN能够很好的处理序列化的数据,RNN 在语音识别,语言建模,翻译,图片描述等问题上已经取得了很到的结果. 根据输入.输出的不同和是否有延迟等一些情况,RNN在应用中有如下一些形态: RNN存在的问题 RNN能…
摘要:本篇文章主要通过Tensorflow+Opencv实现CNN自定义图像分类案例,它能解决我们现实论文或实践中的图像分类问题,并与机器学习的图像分类算法进行对比实验. 本文分享自华为云社区<Tensorflow+Opencv实现CNN自定义图像分类及与KNN图像分类对比>,作者:eastmount . 一.图像分类 图像分类(Image Classification)是对图像内容进行分类的问题,它利用计算机对图像进行定量分析,把图像或图像中的区域划分为若干个类别,以代替人的视觉判断.图像分…
http://www.jianshu.com/p/f3bde26febed/ 这篇是 The Unreasonable Effectiveness of Recurrent Neural Networks(by Andrej Karpathy,Stanford的Li Fei-Fei的博士生.文章介绍了RNN和LSTM,同时也介绍了RNN取得的各种瞩目成果.)以及Understanding LSTM Networks(by Chris Olah)的阅读笔记.网上有很多翻译的版本:<递归神经网络不可…
LSTM和双向LSTM讲解及实践 目录 RNN的长期依赖问题LSTM原理讲解双向LSTM原理讲解Keras实现LSTM和双向LSTM 一.RNN的长期依赖问题 在上篇文章中介绍的循环神经网络RNN在训练的过程中会有长期依赖的问题,这是由于RNN模型在训练时会遇到梯度消失(大部分情况)或者梯度爆炸(很少,但对优化过程影响很大)的问题.对于梯度爆炸是很好解决的,可以使用梯度修剪(Gradient Clipping),即当梯度向量大于某个阈值,缩放梯度向量.但对于梯度消失是很难解决的.所谓的梯度消失或…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![认真看图][认真看图] [补充说明]深度学习中的序列模型已经广泛应用于自然语言处理(例如机器翻译等).语音识别.序列生成.序列分析等众多领域! [再说一句]本文主要介绍深度学习中序列模型的演变路径,和往常一样,不会详细介绍各算法的具体实现,望理解! 一.循环神经网络RNN 1. RNN标准结构 传统神经网络的前一个输入和后一个输入是完全没有关系的,不能处理序列信息(即前一个输入和后一个输入是…
ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直接训练,并且运行. 包含预处理过的 twitter 英文数据集,训练,运行,工具代码,可以运行但是效果有待提高. 数据集 Twitter 数据集: https://github.com/suriyadeepan/datasets 训练 你需要新建一个 model 文件夹来保存训练完的模型 运行这个文…
http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识别(二)--入门篇 基于tensorflow的MNIST手写数字识别(三)--神经网络篇 一.本文的意义 因为谷歌官方其实已经写了MNIST入门和深入两篇教程了,那我写这些文章又是为什么呢,只是抄袭?那倒并不是,更准确的说应该是笔记吧,然后用更通俗的语言来解释,并且补充更多,官方文章中没有详细展开的…
概括:RNN 适用于处理序列数据用于预测,但却受到短时记忆的制约.LSTM 和 GRU 采用门结构来克服短时记忆的影响.门结构可以调节流经序列链的信息流.LSTM 和 GRU 被广泛地应用到语音识别.语音合成和自然语言处理等. 1. RNN RNN 会受到短时记忆的影响.如果一条序列足够长,那它们将很难将信息从较早的时间步传送到后面的时间步. 因此,如果你正在尝试处理一段文本进行预测,RNN 可能从一开始就会遗漏重要信息.在反向传播期间,RNN 会面临梯度消失的问题. 梯度是用于更新神经网络的权…
Python---Virtualenv 下安装Keras  (基于Tensorflow后端)   一.Keras简介 https://keras-cn.readthedocs.io/en/latest/ Keras是一个高层神经网络API,Keras由纯Python编写而成并基Tensorflow.Theano以及CNTK后端.Keras 为支持快速实验而生,能够把你的idea迅速转换为结果,如果你有如下需求,请选择Keras: 简易和快速的原型设计(keras具有高度模块化,极简,和可扩充特性…
代码已上传到github:https://github.com/taishan1994/tensorflow-text-classification 往期精彩: 利用TfidfVectorizer进行中文文本分类(数据集是复旦中文语料) 利用RNN进行中文文本分类(数据集是复旦中文语料) 利用CNN进行中文文本分类(数据集是复旦中文语料) 利用transformer进行中文文本分类(数据集是复旦中文语料) 基于tensorflow的中文文本分类 数据集:复旦中文语料,包含20类数据集下载地址:h…
FaceRank-人脸打分基于 TensorFlow 的 CNN 模型 隐私 因为隐私问题,训练图片集并不提供,稍微可能会放一些卡通图片. 数据集 130张 128*128 张网络图片,图片名: 1-3.jpg 表示 分值为3 的第3 张图. 你可以把符合这个格式的图片放在 resize_images 来训练模型. 模型 人脸打分基于 TensorFlow 的 CNN 模型 代码参考 : https://github.com/aymericdamien/TensorFlow-Examples/b…
Shiro 核心功能案例讲解 基于SpringBoot 有源码 从实战中学习Shiro的用法.本章使用SpringBoot快速搭建项目.整合SiteMesh框架布局页面.整合Shiro框架实现用身份认证,授权,数据加密功能.通过本章内容,你将学会用户权限的分配规则,SpringBoot整合Shiro的配置,Shiro自定义Realm的创建,Shiro标签式授权和注解式授权的使用场景,等实战技能,还在等什么,快来学习吧! 技术:SpringBoot,Shiro,SiteMesh,Spring,Sp…
用卷积神经网络基于 Tensorflow 实现的中文文本分类 项目地址: https://github.com/fendouai/Chinese-Text-Classification 欢迎提问:http://tensorflow123.com/ 这个项目是基于以下项目改写: cnn-text-classification-tf 主要的改动: 兼容 tensorflow 1.2 以上 增加了中文数据集 增加了中文处理流程 特性: 兼容最新 TensorFlow 中文数据集 基于 jieba 的中…
通过: 手写数字识别  ----卷积神经网络模型官方案例详解(基于Tensorflow,Python) 手写数字识别  ----Softmax回归模型官方案例详解(基于Tensorflow,Python) 运行程序后得的四个文件,再通过手写的图片判断识别概率 代码: import numpy as np import tensorflow as tf from flask import Flask, jsonify, render_template, request import numpy a…
作者:冯牮 前言 本文不是神经网络或机器学习的入门教学,而是通过一个真实的产品案例,展示了在手机客户端上运行一个神经网络的关键技术点 在卷积神经网络适用的领域里,已经出现了一些很经典的图像分类网络,比如 VGG16/VGG19,Inception v1-v4 Net,ResNet 等,这些分类网络通常又都可以作为其他算法中的基础网络结构,尤其是 VGG 网络,被很多其他的算法借鉴,本文也会使用 VGG16 的基础网络结构,但是不会对 VGG 网络做详细的入门教学 虽然本文不是神经网络技术的入门教…
前面介绍过了Tensorflow的基本概念,比如如何使用tensorboard查看计算图.本篇则着重介绍和整理下Constant相关的内容. 基于TensorFlow的深度学习系列教程 1--Hello World! 常量的概念 在tensorflow中,数据分为几种类型: 常量Constant.变量Variable.占位符Placeholder.其中: 常量:用于存储一些不变的数值,在计算图创建的时候,调用初始化方法时,直接保存在计算图中 变量:模型训练的参数,比如全连接里面的W和bias 占…
最近看到一份不错的深度学习资源--Stanford中的CS20SI:<TensorFlow for Deep Learning Research>,正好跟着学习一下TensorFlow的基础,还是收获颇丰,随手整理成博客随时翻阅. 为什么选择TensorFlow? 自从12年AlexNet获得ImageNet大赛的冠军后,深度学习开始流行起来,也因为硬件的快速发展GPU并行计算配合易用的API,让深度学习以及神经网络大放光彩. 深度学习的框架其实有很多,目前来说最火的还要数Pytorch.Te…
Google机器学习课程基于TensorFlow  : https://developers.google.cn/machine-learning/crash-course         https://developers.google.com/machine-learning/crash-course…
目录 炙手可热的LSTM 引言 RNN的问题 恐怖的指数函数 梯度消失* 解决方案 LSTM 设计初衷 LSTM原理 门限控制* LSTM 的 BPTT 参考文献: 炙手可热的LSTM 引言 上一讲说到RNN. RNN可说是目前处理时间序列的大杀器,相比于传统的时间序列算法,使用起来更方便,不需要太多的前提假设,也不需太多的参数调节,更重要的是有学习能力,因此是一种'智能'算法.前面也说到, 不只时间序列,在很多领域,特别是涉及序列数据的,RNN的表现总是那么的'抢眼'.不过,在这抢眼的过程中,…
Chatbot-retrieval说基于tensorflow的检索机器人,原版的代码路径是 https://github.com/dennybritz/chatbot-retrieval, 但是在tensorflow 1.x上可能会出现因API变化导致的执行异常.笔者使用的tensorflow-gpu 1.8.0,使用中需要修改models/dual_encoder.py以下几个地方: 你也可以直接拉取笔者的分支:https://github.com/sumatrae/chatbot-retri…
[RNN以及LSTM的介绍和公式梳理]http://blog.csdn.net/Dark_Scope/article/details/47056361 [知乎 对比 rnn  lstm  简单代码] https://www.zhihu.com/question/37082800 [原码]https://gist.github.com/karpathy/d4dee566867f8291f086 [神经网络介绍 sigmoid,relu 区别]https://zhuanlan.zhihu.com/p…
一.前言 随着深度学习在图像.语言.广告点击率预估等各个领域不断发展,很多团队开始探索深度学习技术在业务层面的实践与应用.而在广告CTR预估方面,新模型也是层出不穷: Wide and Deep[1].DeepCross Network[2].DeepFM[3].xDeepFM[4],美团很多篇深度学习博客也做了详细的介绍.但是,当离线模型需要上线时,就会遇见各种新的问题: 离线模型性能能否满足线上要求.模型预估如何镶入到原有工程系统等等.只有准确的理解深度学习框架,才能更好地将深度学习部署到线…
一.基于TensorFlow的softmax回归模型解决手写字母识别问题 详细步骤如下: 1.加载MNIST数据: input_data.read_data_sets('MNIST_data',one_hot=true) 2.运行TensorFlow的InterractiveSession: sess = tf.InteractiveSession() 3.构建Softmax回归模型: 占位符tf.placeholder 变量tf.Variable 类别预测与损失函数 tf.nn.softmax…
JuergenSchmidhuber 是瑞士的一位牛人,主要贡献是rnn, lstm. google的deep mind新作,Human-level control through deep reinforcement learning一文出来,这位大神表达了不满.原因就是文章中提到说他们是第一次实现了rnn的强化学习什么什么的吧.而这位牛人其实早前的工作实现过的.看了一下,觉得这个争论真是google太过于自大了,其实自从看到google的不少文章错误百出,很多地方前后写的不一致,然后今年竟然…