图像的缩小从物理意义上来说,就是将图像的每个像素的大小缩小相应的倍数.但是,改变像素的物理尺寸显然不是那么容易的,从数字图像处理的角度来看,图像的缩小实际就是通过减少像素个数来实现的.显而易见的,减少图像的像素会造成图像信息丢失.为了在缩小图像的同时,保持原图的概貌特征不丢失,从原图中选择的像素方法是非常重要的.本文主要介绍基于等间隔采样的图像缩小和基于局部均值的图像缩小以及其在OpenCV2的实现. 基于等间隔采样的图像缩小 这种图像缩小算法,通过对原图像像素进行均匀采样来保持所选择到的像素仍…
NLM原文: 基于图像分割的非局部均值去噪算法 基于图像分割的非局部均值去噪算法_百度文库 https://wenku.baidu.com/view/6a51abdfcd22bcd126fff705cc17552706225e5a.html…
转载自网站:http://www.cnblogs.com/luo-peng/p/4785922.html 非局部均值去噪(NL-means)   非局部均值(NL-means)是近年来提出的一项新型的去噪技术.该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征.基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的像素加权平均得到. 理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要计算它与图像中所有像素点间的相似度.但是考虑到…
非局部均值(NL-means)是近年来提出的一项新型的去噪技术.该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征.基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的像素加权平均得到. 理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要计算它与图像中所有像素点间的相似度.但是考虑到效率问题,实现的时候,会设定两个固定大小的窗口:搜索窗口和邻域窗口.邻域窗口在搜索窗口中滑动,根据邻域间的相似性确定像素的权值. 下图是NL-me…
非局部均值去噪(NL-means)一文介绍了NL-means基本算法,同时指出了该算法效率低的问题,本文将使用积分图像技术对该算法进行加速. 假设图像共像个素点,搜索窗口大小,领域窗口大小, 计算两个矩形邻域间相似度的时间为,对于每个像素点需要计算它与搜索窗口内个像素间的相似度,故NL-means复杂度为 . 经过分析可以发现,该算法可以提高之处只有邻域间相似度的计算,即耗时的操作.基本算法中,每次计算邻域间距离时都需要遍历两个邻域,逐对像素点求差值. 如果我们先构造一个关于像素差值的积分图像:…
在有些要求高的场合,需要用到定时器采样.本人在网上没找到合适的源码,于是将自己的思路分享出来,欢迎大家提出意见. 确定ADC采用的通道对应的通道 确定采样对应的引脚(这个在规格书的引脚定义部分可以找到) ADC开启DMA传输 确定ADC采样通道对应的DMA的stream和channel,(这个在英文Reference manual中可以找到) 设定DMA的传输方向,还有DMA缓冲区的大小, 配置DMA中断 在ADC的触发源,选择定时器触发,并配置定时器的频率等参数. --------------…
如题,比opencv自带的实现效果好 #coding:utf8 import cv2 import numpy as np def psnr(A, B): return 10*np.log(255*255.0/(((A.astype(np.float)-B)**2).mean()))/np.log(10) def double2uint8(I, ratio=1.0): return np.clip(np.round(I*ratio), 0, 255).astype(np.uint8) def m…
本篇懒得排版,直接在网页html编辑器编辑 在图像处理时,我们常常需要求出图像的直方图.灰度平均值.灰度的方差,这里给出一个opencv2+自带程序,实现这些功能. 直方图 对于直方图,使用cv::calcHist函数可以求出. 原型 void calcHist(const Mat* arrays, int narrays, const int* channels, InputArray mask, OutputArray hist, int dims, const int* histSize,…
根据OpenCV中Mat类型的结构和内存中存储方式,此处给出三种对图像进行遍历的方法.首先给出基础的读取图片代码,在中间替换三种遍历方法即可,本文中,程序将遍历图像并将所有像素点置为255,所有运行结果中命令行里的数字为程序执行时间. #include "stdafx.h" #include <opencv2/core/core.hpp> #include "highgui.h" #include <iostream> using names…
//采用windows控制台实现计算文件夹中对象总数以及批量读取对象 //#include <afx.h> //和windows.h是一样的作用 #include <opencv2/opencv.hpp> #include <windows.h> using namespace cv; using namespace std; int CBRelationship(string buffer); int main() { ; //记录文件夹中对象数目 WIN32_FIN…