谱聚类步骤 第一步:数据准备,生成图的邻接矩阵: 第二步:归一化普拉斯矩阵: 第三步:生成最小的k个特征值和对应的特征向量: 第四步:将特征向量kmeans聚类(少量的特征向量):…
Laplacian和PCA貌似是同一种性质的方法,坐标系变换.只是拉普拉斯属于图论的范畴,术语更加专业了. 要看就把一篇文章看完整,再看其中有什么值得借鉴的,总结归纳理解后的东西才是属于你的. 问题: 1. 这篇文章有哪些亮点决定他能发NM?单细胞,consensus,较好的表现,包装了一些专业的术语,显得自己很专业,其实真正做的东西很少: 2. consensus方法的本质是什么? 3. 工具的评估准则?ARI,silhouette index 4. SC3的最大缺点是什么?速度太慢,超过10…
摘自 https://blog.csdn.net/beiyangdashu/article/details/49300479 和 https://en.wikipedia.org/wiki/Laplacian_matrix 定义 给定一个由n个顶点的简单图G,它的拉普拉斯矩阵定义为: L = D - A,其中,D是该图G度的矩阵,A为图G的邻接矩阵. 因为G是一个简单图,A只包含0,1,并且它的对角元素均为0. L中的元素给定为: 其中deg(vi) 表示顶点 i 的度. 对称归一化的拉普拉斯…
原文地址:https://www.jianshu.com/p/f864bac6cb7a 拉普拉斯矩阵是图论中用到的一种重要矩阵,给定一个有n个顶点的图 G=(V,E),其拉普拉斯矩阵被定义为 L = D-A,D其中为图的度矩阵,A为图的邻接矩阵.例如,给定一个简单的图,如下(例子来自wiki百科):     把此“图”转换为邻接矩阵的形式,记为A:     把W的每一列元素加起来得到N个数,然后把它们放在对角线上(其它地方都是零),组成一个N×N的对角矩阵,记为度矩阵D,如下图所示.其实度矩阵(…
作者:桂. 时间:2017-04-13  07:43:03 链接:http://www.cnblogs.com/xingshansi/p/6702188.html 声明:欢迎被转载,不过记得注明出处哦~ 前言 前面分析了非负矩阵分解(NMF)的应用,总觉得NMF与谱聚类(Spectral clustering)的思想很相似,打算分析对比一下.谱聚类更像是基于图(Graph)的思想,其中涉及到一个重要概念就是拉普拉斯矩阵(Laplace matrix),想着先梳理一下这个矩阵: 1)拉普拉斯矩阵基…
转自:https://www.kechuang.org/t/84022?page=0&highlight=859356,感谢分享! 在机器学习.多维信号处理等领域,凡涉及到图论的地方,相信小伙伴们总能遇到和拉普拉斯矩阵和其特征值有关的大怪兽.哪怕过了这一关,回想起来也常常一脸懵逼,拉普拉斯矩阵为啥被定义成  ?这玩意为什么冠以拉普拉斯之名?为什么和图论有关的算法如此喜欢用拉普拉斯矩阵和它的特征值? 最近读论文的时候,刚好趁机温习了一下相应的内容,寻本朔源一番,记录下来,希望大家阅读之后,也能够有…
谱聚类(Spectral Clustering)详解 谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的.其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized cut). 图1 谱聚类无向图划分…
    谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法--将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的.其中的最优是指最优目标函数不同,可以是割边最小分割--如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割--如图1的Best cut(如后文的Normalized cut). 图1 谱聚类无向图划分--Smallest cut和Best cut…
什么是谱聚类? 就是找到一个合适的切割点将图进行切割,核心思想就是: 使得切割的边的权重和最小,对于无向图而言就是切割的边数最少,如上所示.但是,切割的时候可能会存在局部最优,有以下两种方法: (1)RatioCut:核心是要求划分出来的子图的节点数尽可能的大 分母变为子图的节点的个数 . (2)NCut:考虑每个子图的边的权重和 分母变为子图各边的权重和. 具体之后求解可以参考:https://blog.csdn.net/songbinxu/article/details/80838865 谱…
大数据,人人都说大数据:类似于人人都知道黄晓明跟AB结婚一样,那么什么是大数据?对不起,作为一个本科还没毕业的小白实在是无法回答这个问题.我只知道目前研究的是高维,分布在n远远大于2的欧式空间的数据如何聚类.今年的研究生数模中用大数据引出了一个国内还不怎么火热的概念——多流形结构.题目中那个给出的流形概念:流形是局部具有欧氏空间性质的空间,欧氏空间就是流形最简单的实例.从而在2000年提出了多流形学习:基于数据均匀采样于一个高维欧氏空间中的低维流形的假设,流形学习试图学习出高维数据样本空间中嵌入…