opencv基于PCA降维算法的人脸识别】的更多相关文章

opencv基于PCA降维算法的人脸识别(att_faces) 一.数据提取与处理 # 导入所需模块 import matplotlib.pyplot as plt import numpy as np import os import cv2 # plt显示灰度图片 def plt_show(img): plt.imshow(img,cmap='gray') plt.show() # 读取一个文件夹下的所有图片,输入参数是文件名,返回文件地址列表 def read_directory(dire…
程序中采用的数据集是ORL人脸库,该人脸库共有400副人脸图像,40人,每人10幅,大小为112*92像素,同一个人的表情,姿势有少许变化. 程序的流程主要分为三部分,数据的预处理(PCA降维和规格化),数据的训练阶段,数据的识别阶段 数据的预处理的流程图如下: 数据的训练流程图如下: 识别流程: 下面贴上一些matlab的实现代码: 数据预处理主要是两个函数,ReadFaces和scaling,第一个函数是将训练图像存成一个200*10304的矩阵,第二个是对数据进行规格化,具体代码如下: f…
------------------------------------------------- Undefined function or variable 'W'. Error in classify (line 18) xNewFace = xNewFace*W; % 经过pca变换降维 Error in GUIRecgFaceImage (line 3) nClass = classify(filepath);  Error while evaluating uicontrol Cal…
PCA算法可以使得高维数据(mxn)降到低维,而在整个降维的过程中会丢失一定的信息,也会因此而实现降噪除噪的效果,另外,它通过降维可以计算出原本数据集的主成分分量Wk矩阵(kxn),如果将其作为数据样本,则可以将其作为原来数据集特征的主特征分量,如果用在人脸识别领域则可以作为人脸数据集的特征脸具体实现降噪效果和人脸特征脸的代码如下所示: #1-1利用手写字体数据集MNIST对PCA算法进行使用和效果对比,体现PCA算法的降噪功能from sklearn import datasetsdigits…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
代码来源 基于极限学习机ELM的人脸识别程序 感谢文章主的分享 我的环境是 win10 anaconda Command line client (version 1.6.5)(conda 4.3.30) tensorflow-gpu 1.1.0 python 3.6.2 1. 直接运行代码块,提示"未知引用 import hpelm" 这是因为我的Python环境没有安装hpelm导致的,运行代码pip install hpelm.第一次安装没有成功,查询发现可能是pip版本问题,升…
关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenCV和商业库虹软(中小型规模免费). 百度的人脸识别,才上线不久,文档不太完善,之前联系百度,官方也给了我基于Android的Example,但是不太符合我的需求,一是照片需要上传至百度服务器(这个是最大的问题),其次,人脸的定位需要自行去实现(捕获到人脸后上传进行识别). OpenCV很早以前就用过,…
对开发库的C#封装,屏蔽使用细节,可以快速安全的调用人脸识别相关API.具体见github地址.新增对.NET Core的支持,在Linux(Ubuntu下)测试通过.具体的使用例子和Demo详解,参见博客地址. 更新: 增加对V1.1两个新功能的支持. 关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenCV和商业库虹软(中小型规模免费). 百度的人脸…
现在有很多人脸识别的技术我们可以拿来使用:但是个人认为还是离线端的SDK比较实用:所以个人一直在搜集人脸识别的SDK:原来使用开源的OpenCV:最近有个好友推荐虹软的ArcFace, 闲来无事就下来测试了一下.个人感觉还不错,效率比OpenCV要好很多,检测速度很快:20ms左右就可以检测出来:获取特征点(人脸比对)的效率也很高,基本上在200ms左右. SDK Demo使用步骤: 1. 下载 SDK (下载时会获取APPID与KEY) 下载到的SDK有3个Zip包: 分别为人脸检测:ARCS…
关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸 识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenCV和商业库虹软(中小型规模免费). 百度的人脸识别,才上线不久,文档不太完善,之前联系百度,官方也给了我基于Android的Example,但是不太符合我的需 求,一是照片需要上传至百度服务器(这个是最大的问题),其次,人脸的定位需要自行去实现(捕获到人脸后上传进行识别). OpenCV很早以前就用…