源码分析的spark版本是1.6. 首先,先看一下 org.apache.spark.streaming.dstream.InputDStream 的 类说明: This is the abstract base class for all input streams. This class provides methods start() and stop() which is called by Spark Streaming system to start and stop receivi…
SparkStreaming接收Kafka数据的两种方式 SparkStreaming接收数据原理 一.SparkStreaming + Kafka Receiver模式 二.SparkStreaming + Kafka Direct模式 三.Direct模式与Receiver模式比较 SparkStreaming2.3+kafka 改变 四.SparkStreaming+Kafka维护消费者offset 五.实例:SparkStreaming集成Kafka,读取Kafka中数据,进行数据统计计…
原文链接:Spark Streaming中空batches处理的两种方法 Spark Streaming是近实时(near real time)的小批处理系统.对给定的时间间隔(interval),Spark Streaming生成新的batch并对它进行一些处理.每个batch中的数据都代表一个RDD,但是如果一些batch中没有数据会发生什么事情呢?Spark Streaming将会产生EmptyRDD的RDD,它的定义如下: 01 package org.apache.spark.rdd…
Spark streaming 和kafka 处理确保消息不丢失的总结 接入kafka 我们前面的1到4 都在说 spark streaming 接入 kafka 消息的事情.讲了两种接入方式,以及spark streaming 如何和kafka协作接收数据,处理数据生成rdd的 主要有如下两种方式 基于分布式receiver 基于receiver的方法采用Kafka的高级消费者API,每个executor进程都不断拉取消息,并同时保存在executor内存与HDFS上的预写日志(write-a…
Spark Streaming与Kafka集成 1.介绍 kafka是一个发布订阅消息系统,具有分布式.分区化.多副本提交日志特点.kafka项目在0.8和0.10之间引入了一种新型消费者API,注意选择正确的包以获得相应的特性.每个版本都是向后兼容的,因此0.8可以兼容0.9和0.10,但是0.10不能兼容早期版本.0.8支持python.Receiver流和Direct流,不支持偏移量提交API以及动态分区订阅,0.10不支持python和Receiver流,支持Direct流.偏移量提交A…
一.Spark Streaming连Kafka(重点) 方式一:Receiver方式连:走磁盘 使用High Level API(高阶API)实现Offset自动管理,灵活性差,处理数据时,如果某一时刻数据量过大就会磁盘溢写,通过WALS(Write Ahead Logs)进行磁盘写入,0.10版本之后被舍弃, 相当于一个人拿着一个水杯去接水,水龙头的速度不定,水杯撑不下就会往盆(磁盘)中接. zookeeper自动管理偏移量   Receiver方式说明:Receiver会以固定的时间向kaf…
spark streaming是以batch的方式来消费,strom是准实时一条一条的消费.当然也可以使用trident和tick的方式来实现batch消费(官方叫做mini batch).效率嘛,有待验证.不过这两种方式都是先把数据从kafka中读取出来,然后缓存在内存或者第三方,再定时处理.如果这时候集群退出,而偏移量又没处理好的话,数据就丢掉了. 而spark streaming提供了两种获取方式,一种是同storm一样,实时读取缓存到内存中;另一种是定时批量读取. 这两种方式分别是: R…
当我们正确地部署好Spark Streaming,我们就可以使用Spark Streaming提供的零数据丢失机制.为了体验这个关键的特性,你需要满足以下几个先决条件: 1.输入的数据来自可靠的数据源和可靠的接收器: 2.应用程序的metadata被application的driver持久化了(checkpointed ); 3.启用了WAL特性(Write ahead log). 下面我将简单地介绍这些先决条件. 可靠的数据源和可靠的接收器 对于一些输入数据源(比如Kafka),Spark S…
转载:https://www.iteblog.com/archives/1322.html Apache Kafka是一个分布式的消息发布-订阅系统.可以说,任何实时大数据处理工具缺少与Kafka整合都是不完整的.本文将介绍如何使用Spark Streaming从Kafka中接收数据,这里将会介绍两种方法:(1).使用Receivers和Kafka高层次的API:(2).使用Direct API,这是使用低层次的KafkaAPI,并没有使用到Receivers,是Spark 1.3.0中开始引入…
来自: https://community.qingcloud.com/topic/344/spark-streaming使用kafka保证数据零丢失 spark streaming从1.2开始提供了数据的零丢失,想享受这个特性,需要满足如下条件: 数据输入需要可靠的sources和可靠的receivers 应用metadata必须通过应用driver checkpoint WAL(write ahead log) 可靠的sources和receivers spark streaming可以通过…