利用cv2.morphologyEx提取图像边界】的更多相关文章

1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op =  cv2.MORPH_OPEN 进行开运算,指的是先进行腐蚀操作,再进行膨胀操作 3. op = cv2.MORPH_CLOSE 进行闭运算, 指的是先进行膨胀操作,再进行腐蚀操作 开运算:表示的是先进行腐蚀,再进行膨胀操作 闭运算:表示先进行膨胀操作,再进行腐蚀操作 代码: 第一步:使用cv2.imread载入…
对于一般的图像提取轮廓,这篇博文介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) #显示原始图像 然后进行低通滤波处理,进行降噪 blured…
利用edge()函数提取图像轮廓,绘制出对象的边界和提取边界坐标信息,matlab实现代码如下: close all;clear all;clc; % 提取图像轮廓,提取图像边缘 I = imread('yifu.jpg'); c = im2bw(I,graythresh(I)); figure; subplot(131);imshow(I); c = flipud(c); %实现矩阵c上下翻转 b = edge(c,'canny'); [u,v] = find(b); %返回边界矩阵b中非零元…
基于ArcGIS有多重办法可以提取影像边界,比如常用的有以下几种方式: a.System Toolboxes --> 3D Analyst Tools --> Conversion --> From Raster --> Raster Domain b.System Toolboxes --> Conversion Tools --> From Raster --> Raster to Polygon c.利用镶嵌数据集Footprint图层的方法来获取 其中每一…
基于matlab工具箱提取图像中的多目标特征(代码如下): 代码前面部分为提取图像的边界信息,调用了后面的遍历函数Pixel_Search,函数实现方法见后~ %%ROI Testing close all; clear all; clc; I=imread('Test.png'); I=rgb2gray(I); I=I(:,:); [m,n]=size(I); I_BW=I; :m :n I_BW(Row1,Clo1)=; else I_BW(Row1,Clo1)=; end end end…
对于即将到来的人工智能时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的领域,会不会感觉马上就out了?作为机器学习的一个分支,深度学习同样需要计算机获得强大的学习能力,那么问题来了,我们究竟要计算机学习什么东西?答案当然是图像特征了.将一张图像看做是一个个像素值组成的矩阵,那么对图像的分析就是对矩阵的数字进行分析,而图像的特征,就隐藏在这些数字规律中.深度学习对外推荐自己的一个很重要的点——深度学习能够自动提取特征.本文主要介绍卷积层提取特征的原理过程,文…
1. tracker = cv2.multiTracker_create() 获得追踪的初始化结果 2.cv2.TrackerKCF_create() 获得KCF追踪器 3.cv2.resize(frame, (w, h), cv2.INTER_AEAR)  # 进行图像大小的重新变化参数说明:frame表示输入图片,(w, h) 表示变化后的长和宽, cv2.INTER_AEAR表示插值的方法 4.cv2.selectROI(‘Frame’, frame, fromCenter=False,s…
1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_ELLIPSE, (3, 3))  # 构造一个全是1的kernel用于形态学的操作 参数说明:cv2.MORPH_ELLIPSE 生成全是1的kernel,(3, 3)表示size 3.cv2.createBackgroundSubtractorMOG2().apply(image) 对图像进行混合…
效果图: *一阶导数与Soble算子 *二阶导数与拉普拉斯算子 定义:把图片想象成连续函数,因为边缘部分的像素值是与旁边像素明显有区别的,所以对图片局部求极值,就可以得到整幅图片的边缘信息了. 不过图片是二维的离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度. 拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值,得到边缘图像. Sobel算子效果图: Scharr算子是Sobel的升级增强 import cv2 as cv imp…
VGG16提取图像特征 (torch7) VGG16 loadcaffe torch7 下载pretrained model,保存到当前目录下 th> caffemodel_url = 'http://www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel'  th> proto_url='https://gist.github.com/ksimonyan/211839e770f7b53…