原文地址: http://www.uml.org.cn/itnews/2013082609.asp 在应用开发过程中,开发者常常会碰到一个非常头疼的问题,就是应用崩溃.而Bugsnag可以很好地解决这一难题.近日,Bugsnag发布了全新的API,基于JSON,能够自动检测移动或Web应用Bug,并实时反馈给开发者 在应用开发过程中,开发者常常会碰到一个非常头疼的问题,就是应用崩溃.为了解决这一问题,原移动游戏公司Heyzap CTO James Smith和同事Simon Maynard一起创…
实时目标检测和分类 GIF 图: 视频截图: 论文: https://arxiv.org/pdf/1506.02640.pdf https://arxiv.org/pdf/1612.08242.pdf 了解更多 YOLO,并且下载权重文件: https://pjreddie.com/darknet/yolo/ 视频教程(视频分享到群文件了): https://www.youtube.com/watch?v=4eIBisqx9_g&feature=youtu.be Android Demo:htt…
1. 引言 在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工:这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取: 单个/多个人脸检测,并依次在摄像头窗口,实时平铺显示检测到的人脸: 图 1 动态实时检测效果图 检测到的人脸矩形图像,会依次 平铺显示 在摄像头的左上方: 当多个人脸时候,也能够依次铺开显示: 左上角窗口的大小会根据捕获到的人脸大小实时变化: 图 2 单个/多个人脸情况下摄像头识别显示结果 2. 代码实现 主要分为三个部分: 摄像头调用,利用 OpenCv…
摘自:https://zhidao.baidu.com/question/1694626564301467468.html火眼,APT威胁下快速成长 FireEye的兴起开始于2012年,这时段正好迎上APT(Advanced Persistent Threat,高级持续性威胁)猖獗. APT是一种以特殊利益(通常为商业和政治利益)为目的,针对类似政府.企业.军队等组织发动具有潜伏性.针对性的攻击.APT是对组织网络的破坏,组织网络上任何一个节点的薄弱都会引起系统性的破坏. APT近年来出现了愈…
介绍 人类可以在几毫秒内在我们的视线中挑选出物体.事实上,你现在就环顾四周,你将观察到周围环境并快速检测到存在的物体,并且把目光回到我们这篇文章来.大概需要多长时间? 这就是实时目标检测.如果我们能让机器做到这一点有多酷?开心的是现在我们就可以做到!主要由于最近在深度学习和计算机视觉方面的突破,我们不仅可以依靠目标检测算法来检测图像中的物体,而且还可以以人类的速度和准确度来实现. 我们将首先看看目标检测的各种细微差别(包括你可能面临的潜在挑战).然后,我将介绍SlimYOLOv3框架并深入探讨它…
Yolo:实时目标检测实战(下) YOLO:Real-Time Object Detection After a few minutes, this script will generate all of the requisite files. Mostly it generates a lot of label files in VOCdevkit/VOC2007/labels/ and VOCdevkit/VOC2012/labels/. In your directory you sho…
Yolo:实时目标检测实战(上) YOLO:Real-Time Object Detection 你只看一次(YOLO)是一个最先进的实时物体检测系统.在帕斯卡泰坦X上,它以每秒30帧的速度处理图像,在COCO test-dev上有57.9%的mAP. 与其他探测器的比较,YOLOv3非常快速和准确.在0.5 IOU处测得的mAP中,YOLOv3与焦距损失相当,但速度快了约4倍.此外,可以轻松地权衡速度和准确性之间的简单改变模型的大小,无需再训练! COCO数据集的性能 How it works…
大家好,先自我介绍一下,我是王睿.之前在Facebook/Instagram担任AI技术负责人,现在DataPipeline任Head of AI,负责研发企业级业务异常检测产品,旨在帮助企业一站式解决业务自动化监控和异常检测问题.今天主要从以下四方面跟大家分享构建该产品的思路和实战. 一.为什么需要人工智能业务异常检测系统 企业会因为业务异常无法得到及时解决而遭受较大的损失,比如某知名互联网企业,将原价为50元的优惠券以18元卖出,导致用户在短时间内大量疯抢,损失惨重.同样,在金融.零售.电商…
源地址:http://blog.sina.com.cn/s/blog_79b67dfe0102uzra.html 最近需要用到人脸检测,于是找了篇引用广泛的论文实现了一下:Robust Real-Time Face Detection.实现的过程主要有三个步骤:人脸数据准备,算法实现,算法调试.     人脸数据集的准备:网上有很多免费的和付费的.比如这里有个网页介绍了一些常用的人脸数据库.我这里只是人脸检测(不是人脸识别),只要有人脸就可以了,所以我下载了几个数据集,然后把它们混在一起用(后面…
人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸,该方法可以检测出来,而侧面/歪斜/光线不好的人脸,无法检测.因此,该方法不适合现场应用.而对于dlib人脸检测方法采用64个特征点检测,效果会好于opencv的方法识别率会更高,本文会分别采用这几种方法来实现人脸识别.那个算法更好,跑跑代码就知道. 实时图像捕获 首先在进行人脸识别之前需要先来学点O…