Jensen 不等式证明】的更多相关文章

机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Taylor展开及其应用 常见概率分布和推导 指数族分布 共轭分布 统计量 矩估计和最大似然估计 区间估计 Jacobi矩阵 矩阵乘法 矩阵分解RQ和SVD 对称矩阵 凸优化 微积分与梯度 常数e的计算过程 常见函数的导数 分部积分法及其应用 梯度 上升/下降最快方向 凸函数 Jensen不等式 自然常数…
若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{i})\leq \sum ^{n} _{i=1} \lambda _{i} f(x_{i}) \qquad (f(\sum ^{n}_{i=1}\lambda _{i}x_{i})\geq \sum ^{n}_{i=1}\lambda _{i}f(x_{i}))\] 特别地,取λi=1/n  (i=1,2,…
前言 在此记录一些不太成熟的思考,希望对各位看官有所启发. 从题目可以看出来这篇文章的主题很杂,这篇文章中我主要讨论的是深度学习为什么要"深"这个问题.先给出结论吧:"深"的层次结构是为了应对现实非线性问题中的复杂度,这种"深"的分层结构能够更好地表征图像语音等数据. 好了,如果各位看官感兴趣,那就让我们开始这次思考的旅程吧! 归并排序 我们首先从归并排序算法开始,这里先跟大家回顾一下这个算法,相信大家都已经非常熟悉了.排序是计算机基础算法中的一…
中国知网:数学分析中Jensen不等式由浅入深进行教学…
一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋于 0 的速度更快一些呢? 我们考察这两个函数的商的极限, 所以当 x → 0 的时候,sin(x) 与 tan(x) 是同样级别的无穷小. 2.相关定理 如果三个函数满足 f(x) ≤ g(x) ≤ h(x), 而且他们都在 x0 处有极 限,那么 重要极限: 三.微分学 微分学的核心思想: 逼近…
整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 [2].Minkowski不等式的证明. http://www.doc88.com/p-2542077482568.html…
证明 如果: 函数 y=ax^2+2bx+c 对任意x >=0 时 y>=0; 函数图象在全部x轴上方,故二次方程判别式 b^2-4ac<=0;(即方程无实数解) 即(2b)^2<=4ac  =>  b^2<ac; 注意:上面g(x0)A(x0-B/1)^2 中X0-B/A 应该表示成(X0+B/A);参考判别式: http://baike.baidu.com/link?url=pwwiWoBpl4yNww_tA7mbm3tcZsIYGuw40GScqkgYiUUsyk…
这个是在凸优化里面看的,在EM算法中看有用到,所以用latex写了篇回忆用的小短文,现在不会把latex产生的pdf怎么转变成放到这里的内容. 所以我选择直接贴图. 这个pdf可以在我的资源里找到. http://download.csdn.net/detail/bendanban/7358053…
评:如果不需要精确到3,上界的求法可以利用$$(1+\frac{1}{n})^n*\frac{1}{2}*\frac{1}{2}<(\frac{n+\frac{1}{n}*n+\frac{1}{2}*2}{n+2})^{n+2}=1$$显得更简单些…