关键字:Windows.cpu模式.Python.faster-rcnn.demo.py 声明:原文发表在博客园,未经允许不得转载!!!本篇blog过程已经多名读者实践验证,有人反馈报错TypeError:‘None Type‘ object has no attribute _getitem_‘,但拿本人编译好的文件可以跑通,对于此问题我没去探究,评论区给出了解决办法(nms函数cpu参数false改为true).blog中除提到的下载链接外我还会给出网盘链接方便下载(链接失效,本人百度云上传…
关键字:Windows.cpu模式.Python.faster-rcnn.demo.py 声明:本篇blog暂时未经二次实践验证,主要以本人第一次配置过程的经验写成.计划在7月底回家去电脑城借台机子试试验证步骤的正确性,本blog将根据实际遇到的问题持续更新.另外blog中除提到的下载链接外我还会给出网盘链接方便下载,包括我的整个工程的网盘链接.如果有些报错解决不了可直接拿本人的相关文件替换,本篇blog具有较高的参考性. 本人微软版caffe工程     下载链接:http://pan.bai…
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Systems. 2015. http://blog.csdn.net/shenxiaolu1984/article/details/51152614 本文是继RCNN[1],fast RCNN[2]之后,目…
一:Faster-R-CNN算法组成: 1.PRN候选框提取模块: 2.Fast R-CNN检测模块. 二:Faster-R-CNN框架介绍 三:RPN介绍 3.1训练步骤:1.将图片输入到VGG或ZF的可共享的卷积层中,得到最后可共享的卷积层的feature map.         2.用一个小网络来卷积这个feature map 2.1在滑动窗口的每个像素点对应的原图片上上设置9个矩形窗口(3种长宽比*3种尺度),称作锚点. 至于这里为什么要在原图上,是因为最后求出来的锚点要跟原图的标定框…
当我们执行cmd 想切换当前工作目录时,会发现windows下命令行模式中cd命令没有生效,到底是什么原因呢? 例如: 当我们想切换到 D:\MySql\mysql-5.7.19-winx64\bin 路径 ,理所当然的输入cd D:\MySql\mysql-5.7.19-winx64\bin   回车后,界面上路径并没有改变 解决办法: 方法一: 输入完上面命令后,再输入D: 回车后,路径即成功的切换到我们想要到的路径 方法二: 直接输入cd /dD:\MySql\mysql-5.7.19-w…
一直想在Windows下取得CPU的时钟速度,找了好久终于找到了函数CallNtPowerInformation,要想使用它,首先必须包含powrprof.h头文件和链接库powerprof.lib.但是还有几个问题: 首先powrprof.h和许多其它在Platform SDK中的头文件一样依然没有被C++验证,如果你在C++程序中包含它的时候如果不小心,依然会有链接错误.最好这样包含它: extern "C" {#include <powrprof.h>}第二个原因是有…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/271 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…
Yaf是一个C语言编写的PHP框架,由鸟哥Laruence开发的高性能框架: Yaf官方文档:http://www.laruence.com/manual/index.html 第一步:安装PHP扩展配置Yaf 1.查看PHP自己版本信息,如下图: 2.根据PHP版本号,编译器版本号和CPU架构,选择合适的Yaf扩展 这里的PHP版本为7.2.9,VC15 ,X86编译以及TS线程安全,所以,选下面的扩展版本: 选择php_yaf-3.0.7-7.2-ts-vc15-x86.zip 下载地址(下…
引言 之前学习了 R-CNN 和 SPPNet,这里做一下回顾和补充. 问题 R-CNN 需要对输入进行resize变换,在对大量 ROI 进行特征提取时,需要进行卷积计算,而且由于 ROI 存在重复区域,所以特征提取存在大量的重复计算: SPPNet 针对 R-CNN 进行了改进,其利用空间金字塔池化来解决形变问题,并且只计算一次卷积得到特征图,ROI 的特征从该特征图的对应区域提取: 但是两者采用相同的计算框架,非常繁琐,特别是需要训练SVM分类器,拟合检测框回归,这两步不仅需要分步进行,使…
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. R-CNN的全称是Region-CNN,它可以说是第一个成功将深度学习应用到目标检测上的算法.后面要讲到的Fast…