CVPR2021 | 开放世界的目标检测】的更多相关文章

​ 本文将介绍一篇很有意思的论文,该方向比较新,故本文保留了较多论文中的设计思路,背景知识等相关内容. 前言: 人类具有识别环境中未知对象实例的本能.当相应的知识最终可用时,对这些未知实例的内在好奇心有助于了解它们. 这促使我们提出一个新的计算机视觉问题,称为:"开放世界对象检测",其中模型的任务是: 1)将尚未引入的对象识别为"未知",无需明确监: 2)在逐渐接收到相应的标签时,逐步学习这些已识别的未知类别,而不会忘记先前学习的类别. 我们制定了这个问题,引入了评…
​前言: 目标检测是计算机视觉中的一项传统任务.自2015年以来,人们倾向于使用现代深度学习技术来提高目标检测的性能.虽然模型的准确性越来越高,但模型的复杂性也增加了,主要是由于在训练和NMS后处理过程中的各种动态标记.这种复杂性不仅使目标检测模型的实现更加困难,而且也阻碍了它从端到端风格的模型设计. 关注公众号CV技术指南,及时获取更多计算机视觉技术总结文章. 早期方法 (2015-2019) 自2015年以来,人们提出了各种深度学习中的目标检测方法,给该领域带来了巨大的影响.这些方法主要分为…
​ 前言: 目标检测的预测框经过了滑动窗口.selective search.RPN.anchor based等一系列生成方法的发展,到18年开始,开始流行anchor free系列,CornerNet算不上第一篇anchor free的论文,但anchor freee的流行却是从CornerNet开始的,其中体现的一些思想仍值得学习. 看过公众号以往论文解读文章的读者应该能感觉到,以往论文解读中会有不少我自己的话来表述,文章写得也很简练.但这篇论文的写作实在很好,以至于这篇解读文章几乎就是对论…
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用于精确物体定位和语义分割的丰富特征层次结构 文章出处:https://www.cnblogs.com/pengsky2016/. 摘要:         过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平.效果最好的方法是融合了多种图像低维特征和高维上下文环境的复杂结合系统.在这篇论文里…
多加速器驱动AGX的目标检测与车道分割 Object Detection and Lane Segmentation Using Multiple Accelerators with DRIVE AGX 自动驾驶汽车需要快速.准确地感知周围环境,以便同时实时完成一系列广泛的任务.系统需要在各种环境.条件和情况下处理障碍物检测.确定车道边界.交叉口检测和多个功能之间的标志识别,并在汽车设置的功率限制范围内快速完成这项工作.DRIVE AGX平台是专门为满足这些要求而设计的. 驱动平台由Xavier…
声明:本文涉及图文和模型素材仅用于个人学习.研究和欣赏,请勿二次修改.非法传播.转载.出版.商用.及进行其他获利行为. 背景 2545光年之外的开普勒1028星系,有一颗色彩斑斓的宜居星球 ,星际移民 ‍ 必须穿戴基地发放的防辐射服才能生存.阿狸 驾驶星际飞行器 降临此地,快帮它在限定时间内使用轮盘移动找到基地获取防辐射服吧! 本文使用 Three.js + React + CANNON 技术栈,实现通过滑动屏幕控制模型在 3D 世界里运动的 Low Poly 低多边形风格小游戏.本文主要涉及到…
执着于光影表现[全境封锁]的开放世界渲染 Snowdrop(雪莲花)引擎的全局照明技术介绍   补上原文链接:http://game.watch.impress.co.jp/docs/news/20160322_749267.html     UBI Massive 工作室的Nikolay Stefannov       3月18日,UBI Soft的技术主管Nikolay Stefannov进行了题为[Global Illumination in 'Tom Clancy's The Divis…
技术揭秘:海康威视PASCAL VOC2012目标检测权威评测夺冠之道 原创 2016-09-21 钟巧勇 深度学习大讲堂 点击上方“深度学习大讲堂”可订阅哦!深度学习大讲堂是高质量原创内容平台,邀请学术界.工业界一线专家撰稿,致力于推送人工智能与深度学习最新技术.产品和活动信息!           近年来,随着深度学习的崛起,计算机视觉得到飞速发展.目标检测作为计算机视觉的基础算法,也搭上了深度学习的快车.基于Proposal的检测框架,从R-CNN到Faster R-CNN,算法性能越来越…
之前作者用滑动窗口和HOG来进行船体监测,在开放水域和港湾取得了不错的成绩,但是对于不一致的复杂背景,这个方法的性能会下降.为了解决这个缺点,作者使用YOLO作为物体检测的流水线,这个方法相比于HOG提高了对背景的辨别力,并且可以快速的在不同尺度和多样传感器上进行快速检测. Review ImageNet上的目标检测和卫星图像上的检测有以下四个方面的不同: 1.卫星图像的目标检测通常都很小(~20像素),而输入图像通常很大.缺少用于训练的卫星图像. 2.卫星图像中所检测的物体的物理和像素大小通常…
Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR. (2016) YOLO的全拼是You Only Look Once,顾名思义就是只看一次,把目标区域预测和目标类别预测合二为一,作者将目标检测任务看作目标区域预测和类别预测的回归问题.该方法采用单个神经网络直接预测物品边界和类别概率,实现端到端的物品检测.因此识…