LDA和PLSA】的更多相关文章

看了<LDA数学八卦>和July的博客,里面涉及到好多公式推导...感觉好复杂,于是记录一些重点简洁的东西,忽略大批量铺垫,直接回答LDA和PLSA是区别: 在pLSA模型中,我们按照如下的步骤得到“文档-词项”的生成模型(频率派): 按照概率选择一篇文档 选定文档后,确定文章的主题分布 从主题分布中按照概率选择一个隐含的主题类别 选定后,确定主题下的词分布 从词分布中按照概率选择一个词 ” 下面,咱们对比下本文开头所述的LDA模型中一篇文档生成的方式是怎样的(贝叶斯派): 按照先验概率选择一…
1     问题描述 LDA由Blei, David M..Ng, Andrew Y..Jordan于2003年提出,是一种主题模型,它可以将文档集中每篇文档的主题以概率分布的形式给出,从而通过分析一些文档抽取出它们的主题(分布)出来后,便可以根据主题(分布)进行主题聚类或文本分类.此外,一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 人类是怎么生成文档的呢?LDA的这三位作者在原始论文中给了一个简单的例子.比如假设事先给定了这几个主题:Arts.Budgets.Childre…

LDA

2 Latent Dirichlet Allocation Introduction LDA是给文本建模的一种方法,它属于生成模型.生成模型是指该模型可以随机生成可观测的数据,LDA可以随机生成一篇由N个主题组成文章.通过对文本的建模,我们可以对文本进行主题分类,判断相似度等.在90年代提出的LSA中,通过对向量空间进行降维,获得文本的潜在语义空间.在LDA中则是通过将文本映射到主题空间,即认为一个文章有若干主题随机组成,从而获得文本间的关系.LDA模型有一个前提:bag of word.意思就…
一.一些概念 互信息: 两个随机变量x和Y的互信息,定义X, Y的联合分布和独立分布乘积的相对熵. 贝叶斯公式: 贝叶斯带来的思考: 给定某些样本D,在这些样本中计算某结论出现的概率,即 给定样本D 所以可以推出,再假定p(Ai)相等,可以推出,这个就是最大似然估计做的事情,看下取哪个参数的时候,D出现的概率最大,最大似然估计其实假定了任何参数被取到的概率都是一样的. 二.贝叶斯网络 随机变量之间并不是独立,而是存在复杂的网络关系.贝叶斯网络又称为有向无环图模型,是一个概率图模型(PGM),根据…
[Topic Model]主题模型之概率潜在语义分析(Probabilistic Latent Semantic Analysis) 感觉LDA在实践中的优势其实不大,学好pLSA才是重点 阅读笔记 PLSI 2008年的时候,pLSA已经被新兴的LDA掩盖了. LDA是pLSA的generalization:LDA的hyperparameter设为特定值的时候,就specialize成pLSA了. 从工程应用价值的角度看,这个数学方法的generalization,允许我们用一个训练好的模型解…
http://www.52ml.net/1917.html 主题模型LDA(latent dirichlet allocation)的应用还是很广泛的,之前我自己在检索.图像分类.文本分类.用户评论的主题词抽取等都用过,做feature.降维等.例如可以用主题维度来表示原来的字典维度,大大的降低了文本表示的维度.这其实也很deep learning中的对特征的抽象有点相似,通过一些聚类等的思想,将一些细粒度的特征组合到一个新的空间上去,例如主题空间. 而且GibbsSampling的LDA实现也…
前言 gamma函数 0 整体把握LDA 1 gamma函数 beta分布 1 beta分布 2 Beta-Binomial 共轭 3 共轭先验分布 4 从beta分布推广到Dirichlet 分布 Dirichlet 分布 1 Dirichlet 分布 2 Dirichlet-Multinomial 共轭 主题模型LDA 1 各个基础模型 11 Unigram model 12 Mixture of unigrams model 2 PLSA模型 21 pLSA模型下生成文档 21 根据文档反…
LDA是一种典型的词袋模型,即它认为一篇文档是由一组词构成的一个集合,词与词之间没有顺序以及先后的关系.一篇文档可以包含多个主题,文档中每一个词都由其中的一个主题生成. 它是一种主题模型,它可以将文档集中每篇文档的主题按照概率分布的形式给出: 同时是一种无监督学习算法,在训练时不需要手工标注的训练集,需要的仅仅是文档集以及指定主题的数量k即可: 此外LDA的另一个优点则是,对于每一个主题均可找出一些词语来描述它: LDA可以被认为是一种聚类算法: [LDA automatically assig…
得知李航老师的<统计学习方法>出了第二版,我第一时间就买了.看了这本书的目录,非常高兴,好家伙,居然把主题模型都写了,还有pagerank.一路看到了马尔科夫蒙特卡罗方法和LDA主题模型这里,被打击到了,满满都是数学公式.LDA是目前为止我见过最复杂的模型了. 找了培训班的视频看,对LDA模型有了大致的认识.下面总结一点东西. 1.LDA与PLSA的联系 LDA模型和PLSA的联系非常紧密,都是概率模型(LSA是非概率模型),是利用概率生成模型对文本集合进行主题分析的无监督学习方法. 不同在于…
1 关于主题模型 使用LDA做推荐已经有一段时间了,LDA的推导过程反复看过很多遍,今天有点理顺的感觉,就先写一版. 隐含狄利克雷分布简称LDA(latent dirichlet allocation),是主题模型(topic model)的一种,由Blei, David M..Ng, Andrew Y..Jordan于2003年提出. 主题模型属于聚类方法,是一种无监督的学习方法. 与通常的tf-idf相比,主题模型重在可以在语义上计算文本内容的相关性.主题模型是一种词袋模型,即只考虑文本总的…