在理解有向图和强连通分量前必须理解与其对应的两个概念,连通图(无向图)和连通分量. 连通图的定义是:如果一个图中的任何一个节点可以到达其他节点,那么它就是连通的. 例如以下图形: 这是最简单的一个连通图,即使它并不闭合.由于节点间的路径是没有方向的,符合从任意一个节点出发,都可以到达其他剩余的节点这一条件,那么它就是连通图了. 连通分量 显然这也是一个图,只不过是由三个子图组成而已,但这并非一个连通图.这三个子图叫做这个图的连通分量,连通分量的内部归根还是一个连通图. 有向图: 在连通图的基础上…
图的遍历(Python实现) 记录两种图的遍历算法——广度优先(BFS)与深度优先(DFS). 图(graph)在物理存储上采用邻接表,而邻接表是用python中的字典来实现的. 两种遍历方式的代码如下所示: # 图的宽度遍历和深度遍历 # 1. BFS def bfsTravel(graph, source): # 传入的参数为邻接表存储的图和一个开始遍历的源节点 frontiers = [source] # 表示前驱节点 travel = [source] # 表示遍历过的节点 # 当前驱节…
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector machine,简称SVM.通俗来讲,它是一种二类分类模型,其基本模型定义为特征空间上的间隔最大的线性分类器,其学习策略便是间隔最大化,最终可转化为一个凸二次规划问题的求解. (一)理解SVM基本原理 1,SVM的本质--分类 给定一些数据点,它们分别属于两个不同的类,现在要找到一个线性分类器把这些…
javascript数据结构与算法--二叉树遍历(后序) 后序遍历先访问叶子节点,从左子树到右子树,再到根节点. /* *二叉树中,相对较小的值保存在左节点上,较大的值保存在右节点中 * * * */ /*用来生成一个节点*/ function Node(data, left, right) { this.data = data;//节点存储的数据 this.left = left; this.right = right; this.show = show; } function show()…
javascript数据结构与算法--二叉树遍历(先序) 先序遍历先访问根节点, 然后以同样方式访问左子树和右子树 代码如下: /* *二叉树中,相对较小的值保存在左节点上,较大的值保存在右节点中 * * * */ /*用来生成一个节点*/ function Node(data, left, right) { this.data = data;//节点存储的数据 this.left = left; this.right = right; this.show = show; } function…
javascript数据结构与算法--二叉树遍历(中序) 中序遍历按照节点上的键值,以升序访问BST上的所有节点 代码如下: /* *二叉树中,相对较小的值保存在左节点上,较大的值保存在右节点中 * * * */ /*用来生成一个节点*/ function Node(data, left, right) { this.data = data;//节点存储的数据 this.left = left; this.right = right; this.show = show; } function s…
(一)认识回归 回归是统计学中最有力的工具之中的一个. 机器学习监督学习算法分为分类算法和回归算法两种,事实上就是依据类别标签分布类型为离散型.连续性而定义的. 顾名思义.分类算法用于离散型分布预測,如前面讲过的KNN.决策树.朴素贝叶斯.adaboost.SVM.Logistic回归都是分类算法.回归算法用于连续型分布预測.针对的是数值型的样本,使用回归.能够在给定输入的时候预測出一个数值.这是对分类方法的提升,由于这样能够预測连续型数据而不不过离散的类别标签. 回归的目的就是建立一个回归方程…
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值之间的距离,然后选取K(K>=1)个距离近期的邻居进行分类推断(投票法)或者回归.假设K=1.那么新数据被简单分配给其近邻的类.KNN算法算是监督学习还是无监督学习呢?首先来看一下监督学习和无监督学习的定义.对于监督学习.数据都有明白的label(分类针对离散分布,回归针对连续分布),依据机器学习产…
模拟退火算法SA原理及python.java.php.c++语言代码实现TSP旅行商问题,智能优化算法,随机寻优算法,全局最短路径 模拟退火算法(Simulated Annealing,SA)最早的思想是由N. Metropolis等人于1953年提出.1983 年,S. Kirkpatrick 等成功地将退火思想引入到组合优化领域.来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温…
图结构: 非常强大的结构化思维(或数学)模型.如果您能用图的处理方式来规范化某个问题,即使这个问题本身看上去并不像个图问题,也能使您离解决问题更进一步. 在众多图算法中,我们常会用到一种非常实用的思维模型--遍历(traversal):对图中所有节点的探索及访问操作. 图的一些相关概念: 简单图(Simple graph):无环并且无平行边的图. 路(path):内部点互不相同的链. 如果无向图G中每一对不同的顶点x和y都有一条路,(即W(G)=1,连通分支数)则称G是连通图,反之称为非连通图.…