sklearn.model_selection.StratifiedShuffleSplit(n_splits=10, test_size=’default’, train_size=None, random_state=None) 参数 n_splits是将训练数据分成train/test对的组数,可根据需要进行设置,默认为10 参数test_size和train_size是用来设置train/test对中train和test所占的比例.例如: 1.提供10个数据num进行训练和测试集划分 2…
PostgreSQL函数如何返回数据集 以下主要介绍PostgreSQL函数/存储过程返回数据集,或者也叫结果集的示例. 背景: PostgreSQL里面没有存储过程,只有函数,其他数据库里的这两个对象在PG里都叫函数. 函数由函数头,体和语言所组成,函数头主要是函数的定义,变量的定义等,函数体主要是函数的实现,函数的语言是指该函数实现的方式,目前内置的有c,plpgsql,sql和internal,可以通过pg_language来查看当前DB支持的语言,也可以通过扩展来支持python等 函数…
sklearn数据集划分方法有如下方法: KFold,GroupKFold,StratifiedKFold,LeaveOneGroupOut,LeavePGroupsOut,LeaveOneOut,LeavePOut,ShuffleSplit,GroupShuffleSplit,StratifiedShuffleSplit,PredefinedSplit,TimeSeriesSplit, ①数据集划分方法——K折交叉验证:KFold,GroupKFold,StratifiedKFold, 将全部…
针对分割问题,官方已经划分好了:http://cs.nyu.edu/~silberman/projects/indoor_scene_seg_sup.html import numpy as np import scipy.io as sio data = sio.loadmat('splits.mat') train_idx = data['trainNdxs'] test_idx = data['testNdxs'] train_size = len(train_idx) test_size…
Alink漫谈(七) : 如何划分训练数据集和测试数据集 目录 Alink漫谈(七) : 如何划分训练数据集和测试数据集 0x00 摘要 0x01 训练数据集和测试数据集 0x02 Alink示例代码 0x03 批处理 3.1 得到记录数 3.2 随机选取记录 3.2.1 得到总记录数 3.2.2 决定每个task选择记录数 3.2.3 每个task选择记录 3.3 设置训练数据集和测试数据集 0x04 流处理 0x05 参考 0x00 摘要 Alink 是阿里巴巴基于实时计算引擎 Flink…
定义一个可输出数据集自定义函数有多种方法 1,先定义结构,再使用结构输出结果 CREATE TYPE compfoo AS (f1 int, f2 text); CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$ SELECT fooid, fooname FROM foo $$ LANGUAGE SQL; 2,直接在return中定义表结构 CREATE FUNCTION sum_n_product_with_tab (x int) RET…
先扯点闲篇儿,直取干货者,可以点击这里. 我曾误打误撞的搞过一年多的量化交易,期间尝试过做价格和涨跌的预测,当时全凭一腔热血,拿到行情数据就迫不及待地开始测试各种算法. 最基本的算法是技术指标类型的,原生的技术指标,改版的技术指标,以技术指标为特征构造机器学习算法,都做过.不论哪种方法,都绕不开一件事——如何使用历史数据验证算法的性能. 当时我是纯纯的小白,对数据集划分完全没有概念,一个很自然的想法就是拿全量数据跑回测,看资金曲线的年华收益.最大回撤.sharpe什么的.那时国内很多量化平台正在…
使用sklearn进行数据挖掘系列文章: 1.使用sklearn进行数据挖掘-房价预测(1) 2.使用sklearn进行数据挖掘-房价预测(2)-划分测试集 3.使用sklearn进行数据挖掘-房价预测(3)-绘制数据的分布 4.使用sklearn进行数据挖掘-房价预测(4)-数据预处理 5.使用sklearn进行数据挖掘-房价预测(5)-训练模型 6.使用sklearn进行数据挖掘-房价预测(6)-模型调优 上一节我们对数据集进行了了解,知道了数据集大小.特征个数及类型和数据分布等信息.做数据…
python中数据集划分函数StratifiedShuffleSplit的使用 文章开始先讲下交叉验证,这个概念同样适用于这个划分函数 1.交叉验证(Cross-validation) 交叉验证是指在给定的建模样本中,拿出其中的大部分样本进行模型训练,生成模型,留小部分样本用刚建立的模型进行预测,并求这小部分样本的预测误差,记录它们的平方加和.这个过程一直进行,直到所有的样本都被预测了一次而且仅被预测一次,比较每组的预测误差,选取误差最小的那一组作为训练模型.下图所示 2.StratifiedS…
基于深度学习和迁移学习的识花实践(转)   深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 TensorFlow 和 Keras 等框架的出现大大降低了编程的复杂度,而迁移学习的思想也允许我们利用现有的模型加上少量数据和训练时间,取得不俗的效果. 这篇文章将示范如何利用迁移学习训练一个能从图片中分类不同种类的花的模型,它在五种花中能达到 80% 以上的准确度(比瞎蒙高了 60% 哦),而且只需要普…