洛谷P1297 单选错位——期望】的更多相关文章

题目:https://www.luogu.org/problemnew/show/P1297 读懂题后就变得很简单啦: 对于一个问题和它的下一个问题,我们考虑: 设上一个问题有 a 个选项,下一个问题有 b 个选项: 那么上一道题中选到每个选项的概率是 1/a: 下面对应正确的概率是 1/b: 则总期望是 1/a * 1/b * min(a,b): 也就是 1/max(a,b). 代码如下: #include<iostream> #include<cstdio> #include&…
BZOJ_2134_单选错位——期望DP 题意: 分析:设A为Ai ∈ [1,ai+1] 的概率,B为Ai = A(imodn+1)的概率显然P(A|B) = 1,那么根据贝叶斯定理P(B) = P(B|A)*P(A)P(A) = min(ai,ai+1)/aiP(B|A) = 1/a(i+1)P(B) = min(ai,ai+1)/(ai*a(i+1))又因为期望的可加性,直接加起来统计答案 代码: #include <stdio.h> #include <string.h> #…
第i个填到第i+1个的期望得分显然是1/max(a[i],a[i+1]).根据期望的线性性, 我们只需将每个选项的期望值累加即可. --------------------------------------------------------------------------- #include<bits/stdc++.h>   using namespace std;   typedef long long ll;   const int maxn = 10000009;   int a…
2134: 单选错位 Time Limit: 10 Sec Memory Limit: 259 MB Description Input n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a.下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入): // for pascal readln(n,A,B,C,q[1]); for i:=2 to n do q[i] := (int64(q[i-1]) * A + B)…
题目 题目描述 gx和lc去参加noip初赛,其中有一种题型叫单项选择题,顾名思义,只有一个选项是正确答案.试卷上共有n道单选题,第i道单选题有ai个选项,这ai个选项编号是1,2,3,-,ai,每个选项成为正确答案的概率都是相等的.lc采取的策略是每道题目随机写上1-ai的某个数作为答案选项,他用不了多少时间就能期望做对 道题目.gx则是认认真真地做完了这n道题目,可是等他做完的时候时间也所剩无几了,于是他匆忙地把答案抄到答题纸上,没想到抄错位了:第i道题目的答案抄到了答题纸上的第i+1道题目…
考虑第 iii 位, 那么当前共有 a[i]a[i]a[i] 种选项,那么当前选项正确的情况就是下一个被误填的答案与当前答案相同.换句话说,当前答案一共有 a[i]a[i]a[i] 种可能,而下一个答案有 a[i+1]a[i + 1]a[i+1]种可能,那么总共有 a[i]∗a[i+1]a[i]*a[i+1]a[i]∗a[i+1] 种可能,其中,我们要去 min(a[i],a[i+1])min(a[i], a[i+1])min(a[i],a[i+1]) 作为分子(想一想,为什么).故每种答案的贡…
[题意]有n道题,第i道题有ai个选项.把第i道题的正确答案填到第i+1道题上(n填到1),问期望做对几道题.n<=10^7. [算法]期望DP [题解]正确答案的随机分布不受某道题填到后面是否正确影响,因此每道题对的期望都是独立的. 从排列的角度分析,对每道题有a[i-1]个选择和a[i]个选项,共a[i-1]*a[i]种排列,其中只有min(a[i-1],ai)种排列使这道题正确,所以 $$E(i)=\frac{Min(a[i-1],a[i])}{a[i-1]*a[i]}=\frac{1}{…
题目描述 输入 n很大,为了避免读入耗时太多,输入文件只有5个整数参数n, A, B, C, a1,由上交的程序产生数列a.下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入): // for pascal readln(n,A,B,C,q[1]); for i:=2 to n do q[i] := (int64(q[i-1]) * A + B) mod 100000001; for i:=1 to n do q[i] := q[i] mod C + 1; // fo…
Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1101  Solved: 851[Submit][Status][Discuss] Description Input n很大,为了避免读入耗时太多, 输入文件只有5个整数参数n, A, B, C, a1, 由上交的程序产生数列a. 下面给出pascal/C/C++的读入语句和产生序列的语句(默认从标准输入读入):  // for pascal  readln(n,A,B,C,q[1]);  for…
这是一道我们的考试题 前置芝士 期望 定义:试验中每次可能结果的概率乘以其结果的总和(来自百度某科 滑稽) 性质:\(E(ax+by)\) = \(xE(a)\) * \(yE(b)\) 计算式: \(E(x)\) = \(\sum_{i=1}^{\infty}\) \(w_i * p_i\) 题意 gx把第\(i\) 题的答案涂到了 \(i+1\) 上 让我们求出gx 答对的期望 分析 每个题的选项不同,考虑分情况讨论. 当两个题的选项数相同时,gx答对的概率为\({1} \over {a_i…