Clustering K-means: 基本思想是先随机选择要分类数目的点,然后找出距离这些点最近的training data 着色,距离哪个点近就算哪种类型,再对每种分类算出平均值,把中心点移动到平均值处,重复着色算平均值,直到分类成功. 为了防止k-means 算法得到的是local optima, 可以多次运行k-means, 然后选取得到J最小值的那次初始化方法. One way to choose K is elbow method Dimentionality Re…
Unsupervised learning, attention, and other mysteries Get notified when our free report “Future of Machine Intelligence: Perspectives from Leading Practitioners” is available for download. The following interview is one of many that will be included…
摘要: 本文是吴恩达 (Andrew Ng)老师<机器学习>课程,第一章<绪论:初识机器学习>中第4课时<无监督学习>的视频原文字幕.为本人在视频学习过程中逐字逐句记录下来以便日后查阅使用.现分享给大家.如有错误,欢迎大家批评指正,在此表示诚挚地感谢!同时希望对大家的学习能有所帮助. In this video (article), we'll talk about the second major type of machine learning problem, c…
Supervised Learning In supervised learning, we are given a data set and already know what our correct output should look like, having the idea that there is a relationship between the input and the output. Supervised learning problems are categorized…
1 Unsupervised Learning 1.1 k-means clustering algorithm 1.1.1 算法思想 1.1.2 k-means的不足之处 1.1.3 如何选择K值 1.1.4 Spark MLlib 实现 k-means 算法 1.2 Mixture of Gaussians and the EM algorithm 1.3 The EM Algorithm 1.4 Principal Components…
Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur…