最短路径问题:dijkstar】的更多相关文章

背景:本文是在小甲鱼数据结构教学视频中的代码的基础上,添加详细注释而完成的.该段代码并不完整,仅摘录了核心算法部分,结合自己的思考,谈谈理解. Dijkstar算法理解: Dijkstar算法的核心思想就是通过一次一次的迭代,逐个寻找起始顶点到图中每一个顶点的最短路径,并在确定一个顶点的最短路径之后,设置标志位,同时根据最新确定的顶点的最短路径,对其他与之相关顶点的最短路径进行修正和更新. 如图(摘录自小甲鱼教学视频中的图片),是一个带有权值的连通网: 根据上图可以列写出该连通网的邻接矩阵,为了…
算法描述: 输入图G,源点v0,输出源点到各点的最短距离D 中间变量v0保存当前已经处理到的顶点集合,v1保存剩余的集合 1.初始化v1,D 2.计算v0到v1各点的最短距离,保存到D for each i in v0;D(j)=min[D(j),G(v0(1),i)+G(i,j)] ,where j in v1 3.将D中最小的那一项加入到v0,并且从v1删除这一项. 4.转到2,直到v0包含所有顶点. %dijsk最短路径算法 clear,clc G=[ inf inf 10 inf 30…
博客转载自:https://blog.csdn.net/crescent__moon/article/details/16986765 先说说Dijkstra吧,这种算法只能求单源最短路径,那么什么是单源最短路径呢?就是只能求一个点到别的点最短路径,而不能求所有点到其它点的最短路径.当然如果枚举所有点都用一遍Dijkstra的话,也能求出来,不过这就失去了这个算法的真正意义,而且时间复杂度会从O(n^2)变为O(n^3).这个算法还有一个缺点就是在图中权值必须都是正的,否则不能用.下面说说Dij…
同样是层序遍历,在每次迭代中挑出最小的设置为已知 ===================================== 2017年9月18日10:00:03 dijkstra并不是完全的层序遍历,在第次迭代中挑出未遍历的最小的边,一种信心的应用 ===================================== dijkstra算法是求带权单顶点到其他顶点的最短路径问题 表初始化 void InitTable(Vertex Start, Graph G, Table T) { in…
一.相关定义 最短路径:从图中的某个顶点出发到达另外一个顶点的所经过的边的权重和最小的一条路径. 地位:Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构.图论.运筹学等等. 缺陷:若有一个带负权回路的图(即一个不存在最短路径的图),Dijkstra算法无法检测出这个问题. 时间复杂度:O(n2),若进行堆优化,可降为O(n*logn). 二.算法描述 主要变量如下: int n   表示有n个点,从1~n标号 int s,t  s为源点,t为终…
ospf学习-----SPF最短路径算法 常见的路由协议比如RIP.IGRP.BGP是距离矢量协议,OSPF和ISIS是数据链路状态协议.矢量协议路由器只知道本身和与自身相连的接口路由信息,矢量图只是一张方向图,在路由传播的过程中,容易造成环路.RIP路由器采用扁平化设计规避环路,BGP则采用As-path规避环路.OSPF是数据链路状态路由协议,采用的SPF算法,即最小生成树算法(Dijkstar),ospf内不存在路由环路,但是OSPF间传递路由信息的时候,却是矢量路由协议,也就是说OSPF…
1.最短路径问题的常用算法 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 1.1 最短路径长度与最短加权路径长度 在日常生活中,最短路径长度与最短路径距离好像并没什么区别.但在具体的图论问题中却可能是不同的概念和问题,经常会被混淆. 图论中有无权图和有权图,无权图中的边没有权,赋权图的边带有权,可以表示距离.时间.费用或其它指标.在问题文字描述中,往往并不直接指出是无权图还是有权图,这时就要注意最短路径与最短加权路径的区别.路径长度是把每个顶点到相邻顶点的…
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkstra 算法.Bellman-Ford 算法和Floyd 算法,另外还有启发式算法 A*. 『Python小白的数学建模课 @ Youcans』带你从数模小白成为国赛达人. 1. 最短路径问题 最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 最短路径问题有几种形式…
解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: Bellman-Ford 单源最短路径算法:时间复杂度为 O(VE),适用于带负权值情况: 对于全源最短路径问题(All-Pairs Shortest Paths Problem),可以认为是单源最短路径问题的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离.例如,对每个顶点应用 Bel…
Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Problem),其中图 G 允许存在权值为负的边,但不存在权值为负的回路.Floyd-Warshall 算法的运行时间为 Θ(V3). Floyd-Warshall 算法由 Robert Floyd 于 1962 年提出,但其实质上与 Bernad Roy 于 1959 年和 Stephen Warshal…