pandas 使用出现的问题汇总】的更多相关文章

问题1:<bound method NDFrame.head of 刚开始还以为是自己的数据集有问题,怎么显示不对呢! 解决: 仔细观察,是自己给的输出有问题,data.head什么鬼??? 正确应该 data.head()…
使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(index) 增加一个值变量(value) 更改数值汇总方式 增加数值汇总方式 增加一个列维度(columns) 增加多个列维度 增加数据汇总值 数据透视表是Excel中最常用的数据汇总工具,它可以根据一个或多个制定的维度对数据进行聚合.在python中同样可以通过pandas.pivot_table函数来…
import numpy as np import pandas as pd import matplotlib.pyplot as plt df1 = pd.DataFrame(np.arange(1000, 1100, 4).reshape(5,5), index=['a'+str(i) for i in range(5)], columns=['b'+str(j) for j in range(5)]) df1 .dataframe tbody tr th:only-of-type { v…
2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它首先比较吸引人的作用是汇总计算 (1)基本的数学统计计算这里的基本计算指的是sum.mean等操作,主要是基于Series(也可能是来自DataFrame)进行统计计算.举例如下: #统计计算 sum mean等 import numpy as np import pandas as pd df=p…
在进行数据分析之前,我们需要做的事情是对数据有初步的了解,比如对数据本身的敏感程度,通俗来说就是对数据的分布有大概的理解,此时我们需要工具进行数据的描述,观测数据的形状等:而后才是对数据进行建模分析,挖掘数据中隐藏的位置信息.怒气按在数据描述和简单分析方面做得比较好的是Pandas库.当然,它还需要结合Numpy.Scipy等科学计算相关库才能发挥功效. Pandas数据结构 在进行Pandas相关介绍时,我们首先需要知道的是Pandas的两个数据结构(即对象)Series和DataFrame,…
import pandas as pd import numpy as np # 创建的Series几种方式 s1 = pd.Series(range(4)) s2 = pd.Series([0, 1, 2, 3]) s3 = pd.Series(np.arange(4)) print(s1) ''' 0 0 1 1 2 2 3 3 dtype: int64 ''' print(s2) ''' 0 0 1 1 2 2 3 3 dtype: int64 ''' print(s3) ''' 0 0…
pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…
pd对象拥有一组常用的数学和统计方法.大部分都属于约简和汇总统计,用于从Series中单个值,如sum 和 mean 或从DF的行或列中提取一个Series. 1. 描述和汇总统计方法 #汇总和计算描述统计 import numpy as np import pandas as pd #定义一个4*2维的数据结构 df = pd.DataFrame([[1.4, np.nan], [7.1, -4.5], [np.nan, np.nan], [0.75, -1.3]], index = list…
层次化索引 层次化也就是在一个轴上拥有多个索引级别 Series的层次化索引 data=Series(np.random.randn(10),index=[ ['a','a','a','b','b','b','c','c','d','d'], [1,2,3,1,2,3,1,2,2,3] ]) data a 1 0.965999 2 -0.271733 3 0.133910 b 1 -0.806885 2 -0.622905 3 -0.355330 c 1 -0.659194 2 -1.08287…
汇总的函数 方法 说明 count 非NA的值数量 describe 针对Series和DataFrame列计算汇总统计 min.max 计算最小值和最大值 argmin.argmax 计算能够获取到最小值和最大值的索引位置 idxmin.indxmax 计算能够获取到最小值和最大值的索引值 quantile 计算四分位数 sum 值的总和 mean 值的平均数 median 值的算术中位数(第50百分位数) mad 根据平均值计算平均绝对离差 var 样本值的方差 std 样本值的标准差 sk…