SCUT - 485 - 质因数计数 - 原根】的更多相关文章

https://scut.online/p/485 给定a和n,求有多少个质数p,满足n是使得a^n=1 mod p成立的最小正整数. 翻译:求有多少个质数p,使得a模p的阶delta_m(a)是n 先验证 a^n=1 mod p 成立 那么假如还有更小的m使得 a^m=1 mod p 成立,则这个p不合要求 由阶的性质有delta_m(a)|n,故只需要检查n的所有因子就可以了. 但其实不需要检查所有因子,只需要检查n的所有质因子.(从板子上面可以看出来,但是为什么) 即 a^(p_i) =…
https://scut.online/p/11 T了好多次,还想用mutimap暴力分解每个数的质因数.后来记录每个数的最小质因子过了. #include <bits/stdc++.h> using namespace std; typedef long long ll; int n, m, MOD; const int SIZE = 1e6, SIZEP = 8e4; int p2[SIZE + 5], p5[SIZE + 5]; int p[SIZEP + 5], ptop; int m…
https://scut.online/p/243 这道题唯一难点在于如何快速确定m合法.可以统计滑动窗口中已有元素的数量. #include<bits/stdc++.h> using namespace std; #define ll long long int n; ]; ]; int sum; ]; int cntsum; bool ok(int m){ memset(cnta,,sizeof(cnta)); cntsum=; ;i<m;i++){ ){ cntsum++; } c…
数论入门2 另一种类型的数论... GCD,LCM 定义\(gcd(a,b)\)为a和b的最大公约数,\(lcm(a,b)\)为a和b的最小公倍数,则有: 将a和b分解质因数为\(a=p1^{a1}p2^{a2}p3^{a3}...pn^{an},b=p1^{b1}p2^{b2}p3^{b3}...pn^{bn}\),那么\(gcd(a,b)=\prod_{i=1}^{n}pi^{min(ai,bi)},lcm(a,b)=\prod_{i=1}^{n}pi^{max(ai,bi)}\)(0和任何…
Prufer序列+组合数学 嗯哼~给定每个点的度数!求树的种数!那么很自然的就想到是用prufer序列啦~(不知道prufer序列的……自己再找找资料吧,这里就不放了,可以去做一下BZOJ1005明明的烦恼) 那么我们令每个点的度数v[i]-1,得到每个节点在prufer序中的出现次数! 现在就是求这个prufer序有多少种了……有两种做法: 1.多重集排列数:n个元素,每种元素有a[i]个,求全排列的方案数,自己随便yy一下就可以得到$$ans=\frac{n!}{\prod (a[i]!)}…
http://poj.org/problem?id=1284 题意:给定一个奇素数p,求p的原根个数. 原根: { (xi mod p) | 1 <= i <= p-1 } is equal to { 1, ..., p-1 },则x是p的原根. 题解:结论:奇素数p的原根个数为phi(p-1). 证明: 对于给出的素数p, 首先要明确一点:p的元根必然是存在的(这一点已由Euler证明,此处不再赘述),因此,不妨设其中的一个元根是a0(1<=a0<=p-1) 按照题目的定义,a0…
原根求解算法: 获取一个数\(N\)的原根\(root\)的算法 #include<bits/stdc++.h> #define ll long long #define IL inline #define RG register using namespace std; ll prm[1000],tot,N,root; ll Power(ll bs,ll js,ll MOD){ ll S = 1,T = bs; while(js){ if(js&1)S = S*T%MOD; T =…
[整除] 若a被b整除,即a是b的倍数,那么记作b|a("|"是整除符号),读作"b整除a"或"a能被b整除".b叫做a的约数(或因数),a叫做b的倍数. [质因数分解] 把一个正整数数分解成几个质数的幂相乘的形式叫做质因数分解. e.g. 10=2*5 16=24 18=2*32 [唯一分解定理] 唯一分解定理(算术基本定理)可表述为:任何一个大于1的自然数 N,如果N不为质数,那么N可以唯一分解成有限个质数的乘积: N=P1a1*P2a2*P…
0 写在前面 0.0 前言 由于我太菜了,导致一些东西一学就忘,特开此文来记录下最让我头痛的数学相关问题. 一些引用的文字都注释了原文链接,若侵犯了您的权益,敬请告知:若文章中出现错误,也烦请告知. 该文于 2018.3.31 完成最后一次修改(若有出错的地方,之后也会进行维护).其主要内容限于数论和组合计数类数学相关问题.因为版面原因,其余数学方面的总结会以全新的博文呈现. 感谢你的造访. 0.1 记号说明 由于该文完成的间隔跨度太大,不同时期的内容的写法不严谨,甚至 $LaTeX$ 也有许多…
题目描述 在ACM_DIY群中,有一位叫做“傻崽”的同学由于在数论方面造诣很高,被称为数轮之神!对于任何数论问题,他都能瞬间秒杀!一天他在群里面问了一个神题: 对于给定的3个非负整数 A,B,K 求出满足 (1) X^A = B(mod 2*K + 1) (2) X 在范围[0, 2K] 内的X的个数!自然数论之神是可以瞬间秒杀此题的,那么你呢? 输入 第一行有一个正整数T,表示接下来的数据的组数( T <= 1000) 之后对于每组数据,给出了3个整数A,B,K (1 <= A, B <…