Kafka消费分组和分区分配策略】的更多相关文章

Kafka消费分组,消息消费原理 同一个消费组里的消费者不能消费同一个分区,不同消费组的消费组可以消费同一个分区 Kafka分区分配策略 在 Kafka 内部存在两种默认的分区分配策略:Range 和 RoundRobin.当以下事件发生时,Kafka 将会进行一次分区分配: 同一个 Consumer Group 内新增消费者 消费者离开当前所属的Consumer Group,包括shuts down 或 crashes 订阅的主题新增分区 将分区的所有权从一个消费者移到另一个消费者称为重新平衡…
“ 为什么Kafka在RangeAssigor.RoundRobinAssignor的基础上,又新增了PartitionAssignor,它解决了什么问题?” 背景 用过Kafka的同学应该都知道Kafka的分区和消费组的概念.在Kafka中,每个Topic会包含多个分区,默认情况下一个分区只能被一个消费组下面的一个消费者消费,这里就产生了分区分配的问题.Kafka中提供了多重分区分配算法(PartitionAssignor)的实现:RangeAssigor.RoundRobinAssignor…
引言按照Kafka默认的消费逻辑设定,一个分区只能被同一个消费组(ConsumerGroup)内的一个消费者消费.假设目前某消费组内只有一个消费者C0,订阅了一个topic,这个topic包含7个分区,也就是说这个消费者C0订阅了7个分区,参考下图(1). 此时消费组内又加入了一个新的消费者C1,按照既定的逻辑需要将原来消费者C0的部分分区分配给消费者C1消费,情形上图(2),消费者C0和C1各自负责消费所分配到的分区,相互之间并无实质性的干扰. 接着消费组内又加入了一个新的消费者C2,如此消费…
问题 用过 Kafka 的同学用过都知道,每个 Topic 一般会有很多个 partitions.为了使得我们能够及时消费消息,我们也可能会启动多个 Consumer 去消费,而每个 Consumer 又会启动一个或多个streams去分别消费 Topic 里面的数据.我们又知道,Kafka 存在 Consumer Group 的概念,也就是 group.id 一样的 Consumer,这些 Consumer 属于同一个Consumer Group,组内的所有消费者协调在一起来消费订阅主题(su…
用过 Kafka 的同学应该都知道,每个 Topic 一般会有很多个 partitions.为了使得我们能够及时消费消息,我们也可能会启动多个 Consumer 去消费,而每个 Consumer 又会启动一个或多个streams去分别消费 Topic 对应分区中的数据.我们又知道,Kafka 存在 Consumer Group 的概念,也就是 group.id 一样的 Consumer,这些 Consumer 属于同一个Consumer Group,组内的所有消费者协调在一起来消费订阅主题(su…
众所周知,Apache Kafka是基于生产者和消费者模型作为开源的分布式发布订阅消息系统(当然,目前Kafka定位于an open-source distributed event streaming platform),由Scala和Java编写. Kafka提供了类似于JMS的特性,但设计上又有很大区别,它不是JMS规范的实现,如Kafka允许多个消费者主动拉取数据,而在JMS中只有点对点模式消费者才会主动拉取数据. Kafka producer在向Kafka集群发送消息时,需要指定top…
body { margin: 0 auto; font: 13px / 1 Helvetica, Arial, sans-serif; color: rgba(68, 68, 68, 1); padding: 5px } h1, h2, h3, h4 { color: rgba(17, 17, 17, 1); font-weight: 400 } h1, h2, h3, h4, h5, p { margin-bottom: 16px; padding: 0 } h1 { font-size: 2…
消费方式: consumer 采用 pull(拉)模式从 broker 中读取数据. push(推)模式很难适应消费速率不同的消费者,因为消息发送速率是由 broker 决定的. 它的目标是尽可能以最快速度传递消息,但是这样很容易造成 consumer 来不及处理消息,典型的表现就是拒绝服务以及网络拥塞.而 pull 模式则可以根据 consumer 的消费能力以适 当的速率消费消息. pull 模式不足之处是,如果 kafka 没有数据,消费者可能会陷入循环中,一直返回空数 据.针对这一点,K…
单线程消费 以之前生产者中的代码为例,事先准备好了一个 Topic:data-push,3个分区. 先往里边发送 100 条消息,没有自定义路由策略,所以消息会均匀的发往三个分区. 先来谈谈最简单的单线程消费,如下图所示: 由于数据散列在三个不同分区,所以单个线程需要遍历三个分区将数据拉取下来. 单线程消费的示例代码: 这段代码大家在官网也可以找到:将数据取出放到一个内存缓冲中最后写入数据库的过程. 先不讨论其中的 offset 的提交方式. 通过消费日志可以看出: 取出的 100 条数据确实是…
基于Python结合pykafka实现kafka生产及消费速率&主题分区偏移实时监控   By: 授客 QQ:1033553122   1.测试环境 python 3.4 zookeeper-3.4.13.tar.gz 下载地址1: http://zookeeper.apache.org/releases.html#download https://www.apache.org/dyn/closer.cgi/zookeeper/ https://mirrors.tuna.tsinghua.edu…