4.大表join小表优化 和join相关的优化主要分为mapjoin可以解决的优化(即大表join小表)和mapjoin无法解决的优化(即大表join大表),前者相对容易解决,后者较难,比较麻烦. 首先介绍大表join小表优化.以销售明细表为例来说明大表join小表的场景. 假如供应商进行评级,比如(五星.四星.三星.二星.一星),此时因为人员希望能够分析各供应商星级的每天销售情况及其占比. 开发人员一般会写出如下SQL: select  seller_star, count(order_id)…
hive在大数据套件中占很的地位,分享下个人经验. 1.在hive日常开发中,我们首先面对的就是hive的表和库,因此我要先了解库,表的命名规范和原则 如 dwd_whct_xmxx_m 第1部分为表数据仓库分层:可能取值为ods,dwd(dw明细层),dws(dw汇总层),ads(应用层)等. 第2部分为业务领域 可能为whct(文化传统),whcp文化产品等. 第3层为用户自定义标签 比如项目信息为xmxx,用户可以可以自己定义业务,项目和产品标签 第4层为时间标签:比如d为天,m为月,y为…
第1章 Hive入门 1.1 什么是Hive Hive:由Facebook开源用于解决海量结构化日志的数据统计. Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张表,并提供类SQL查询功能. 本质是:将HQL转化成MapReduce程序 )Hive处理的数据存储在HDFS 2)Hive分析数据底层的实现是MapReduce 3)执行程序运行在Yarn上 1.2 Hive的优缺点 1.2.1 优点 操作接口采用类SQL语法,提供快速开发的能力(简单.容易上手). 避免…
如今随着环境的改变,物联网.AI.大数据.人工智能等,是未来的大趋势,而大数据是这些基石,万物互联,机器学习都是大数据应用场景! 为什么要学习大数据?我们JAVA到底要不要转型大数据? 好比问一个程序员为什么要学编程! 大数据技术是未来科技的必备技能,在外行看来大数据就是噱头,华而不实,对于大数据技术来说"先是看不见,再是看不上,最后是跟不上".做技术的一定要跟上时代,做精当下,看见未来! 大数据,人工智能,可以说绝对是未来十年社会发展的风向标.生存法则变了, 你再不懂这些就彻底晚了!…
点击上方 蓝字关注我们 作者 | 宋哲琦 ✎ 编 者 按 在不久前的 Apache  DolphinScheduler Meetup 2021 上,有赞大数据开发平台负责人 宋哲琦 带来了平台调度系统从 Airflow 迁移到 Apache  DolphinScheduler 的方案设计思考和生产环境实践. 这位来自浙江杭州的 90 后年轻人自 2019 年 9 月加入有赞,在这里从事数据开发平台.调度系统和数据同步组件的研发工作.刚入职时,有赞使用的还是同为 Apache 开源项目的 Airf…
5.大表join大表优化 如果Hive优化实战2中mapjoin中小表dim_seller很大呢?比如超过了1GB大小?这种就是大表join大表的问题.首先引入一个具体的问题场景,然后基于此介绍各自优化方案. 5.1.问题场景 问题场景如下: A表为一个汇总表,汇总的是卖家买家最近N天交易汇总信息,即对于每个卖家最近N天,其每个买家共成交了多少单,总金额是多少,假设N取90天,汇总值仅取成交单数. A表的字段有:buyer_id.seller_id.pay_cnt_90day. B表为卖家基本信…
Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的优化又分为mapjoin可以解决的join优化和mapjoin无法解决的join优化. 1.数据倾斜 倾斜来自于统计学里的偏态分布.所谓偏态分布,即统计数据峰值与平均值不相等的频率分布,根据峰值小于或大于平均值可分为正偏函数和负偏函数,其偏离的程度可用偏态系数刻画. 对应分布式数据处理来说,希望数据…
1.Hive出现背景 Hive是Facebook开发并贡献给Hadoop开源社区的.它是建立在Hadoop体系架构上的一层SQL抽象,使得数据相关人员使用他们最为熟悉的SQL语言就可以进行海量数据的处理.分析和统计工作, 而不是必须掌握Java等编程语言和具备开发MapReduce程序的能力.Hive SQL实际上先被SQL解析器进行解析然后被Hive框架解析成一个MapReduce可执行计划,并按照该计划生成MapReduce任务后交给Hadoop集群处理. 由于Hive SQL是翻译为Map…
1.Hive 表 DDL 1.1.创建表 Hive中创建表的完整语法如下: CREATE [EXTERNAL] TABLE [IF NOT EXISTS]  table_name [ (col_name data_type [COMMET col_comment], . . .)] [COMMENT table_comment] [PARTITIONED BY (col_name data_type [COMMENT col_comment], . . . )] [CLUSTERED BY (c…
1.背景介绍 Storm以及离线数据平台的MapReduce和Hive构成了Hadoop生态对实时和离线数据处理的一套完整处理解决方案.除了此套解决方案之外,还有一种非常流行的而且完整的离线和 实时数据处理方案.这种方案就是Spark.Spark本质上是对Hadoop特别是MapReduce的补充.优化和完善,尤其是数据处理速度.易用性.迭代计算和复杂数据分析等方面. Spark Streaming 作为Spark整体解决方案中实时数据处理部分,本质上仍然是基于Spark的弹性分布式数据集(Re…