初学siameseNet网络,希望可以用于信号的识别分类应用.此文为不间断更新的笔记. siameseNet简介 全连接孪生网络(siamese network)是一种相似性度量方法,适用于类别数目多但是每类的样本数少的分类问题. Siamese Network 是一种神经网络的框架,而不是具体的某种网络,就像seq2seq一样,具体实现上可以使用RNN也可以使用CNN. 简单的说,Siamese Network用于评估两个输入样本的相似度.网络框架: Siamese Network有两个结构相…
上一节,我们完成了网络训练代码的实现,还有一些问题需要做进一步的确认.网络的最终目标是,输入一张手写数字图片后,网络输出该图片对应的数字.由于网络需要从0到9一共十个数字中挑选出一个,于是我们的网络最终输出层应该有十个节点,每个节点对应一个数字.假设图片对应的是数字0,那么输出层网络中,第一个节点应该输出一个高百分比,其他节点输出低百分比,如果图片对应的数字是9,那么输出层最后一个节点应该输出高百分比,其他节点输出低百分比,例如下图: 屏幕快照 2018-05-07 下午5.10.59.png…
摘要:我们提出了一个使用卷积网络进行分类.定位和检测的集成框架.我们展示了如何在ConvNet中有效地实现多尺度和滑动窗口方法.我们还介绍了一种新的深度学习方法,通过学习预测对象边界来定位.然后通过边界框累积而不是抑制边界框以增加检测置信度.我们证明了使用一个共享网络可以同时学习不同的任务.该集成框架是ImageNet大型视觉识别挑战2013(ILSVRC2013)本地化任务的获胜者,在检测和分类任务方面取得了非常有竞争力的成果.在赛后工作中,我们为检测任务建立了一个新的技术状态.最后,我们从我…
目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 1.1 MNIST数据集获取: torchvision.datasets接口直接下载,该接口可以直接构建数据集,推荐 其他途径下载后,编写程序进行读取,然后由Datasets构建自己的数据集 ​ ​ 本文使用第一种方法获取数据集,并使用Dataloader进行按批装载.如果使用程序下载失败,请将其…
sudo ethtool -s eth0 autoneg off speed 100 duplex full…
加州大学洛杉矶分校在PLOS Computing Biology上发表了一篇文章,分析了深度卷积网络(DCNN)和人类识别物体方法的不同:深度卷积网络(DCNN)是依靠物体的纹理进行识别,而人类是依靠物体的轮廓进行识别.如对下面的图a,人类依靠轮廓很快就能识别出这是一只熊,速度和准确性超过深度卷积网络(DCNN):但是如果把熊的图片分成若干部分,再打乱,如图b所示,人类要识别出这是一只熊就很困难了,而深度卷积网络(DCNN)可以很容易的识别出来.这是因为人类是依靠物体的全局信息和轮廓去识别一个物…
国外的文献汇总: <Network Traffic Classification via Neural Networks>使用的是全连接网络,传统机器学习特征工程的技术.top10特征如下: List of Attributes Port number server Minimum segment size client→server First quartile of number of control bytes in each packet client→server Maximum n…
现代办公要将纸质文档转换为电子文档的需求越来越多,目前针对这种应用场景的系统为OCR系统,也就是光学字符识别系统,例如对于古老出版物的数字化.但是目前OCR系统主要针对文字的识别上,对于出版物的版面以及版面文字的格式的恢复,并没有给出相应的解决方案.对于版面恢复中主要遇到的困难是文字字体的恢复.对于汉字字体识别问题,目前主要有几种方法,但是都是基于人工特征提取的方法.以往的方法主要分为两大类,第一种为整体分析法,将一整片数据看做采用小波纹理分析抽取字体特征用于分类:使用滤波器提取文字的全局文字特…
深度学习--手动实现残差网络 辛普森一家人物识别 目标 通过深度学习,训练模型识别辛普森一家人动画中的14个角色 最终实现92%-94%的识别准确率. 数据 ResNet介绍 论文地址 https://arxiv.org/pdf/1512.03385.pdf 残差网络(ResNet)是微软亚洲研究院的何恺明.孙剑等人2015年提出的,它解决了深层网络训练困难的问题.利用这样的结构我们很容易训练出上百层甚至上千层的网络. 残差网络的提出,有效地缓解了深度学习两个大问题 梯度消失:当使用深层的网络时…
深度学习在最近十来年特别火,几乎是带动AI浪潮的最大贡献者.互联网视频在最近几年也特别火,短视频.视频直播等各种新型UGC模式牢牢抓住了用户的消费心里,成为互联网吸金的又一利器.当这两个火碰在一起,会产生什么样的化学反应呢? 不说具体的技术,先上一张福利图,该图展示了机器对一个视频的认知效果.其总红色的字表示objects, 蓝色的字表示scenes,绿色的字表示activities. 图1 人工智能在视频上的应用主要一个课题是视频理解,努力解决“语义鸿沟”的问题,其中包括了:     · 视频…