hadoop mapper reducer】的更多相关文章

Local模式运行MR流程------------------------- 1.创建外部Job(mapreduce.Job),设置配置信息 2.通过jobsubmitter将job.xml + split等文件写入临时目录 3.通过jobSubmitter提交job给localJobRunner, 4.LocalJobRunner将外部Job 转换成成内部Job 5.内部Job线程,开放分线程执行job 6.job执行线程分别计算Map和reduce任务信息并通过线程池孵化新线程执行MR任务.…
一切从示例程序开始: 示例程序 Hadoop2.7 提供的示例程序WordCount.java package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.…
今天在测试mapreduce的程序时,就是简单的去重,对照课本上的程序和自己的程序,唯一不同的就是“org.apache.hadoop.mapreduce.Reducer.Context context”,我写的程序如下: package com.pro.bq; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.…
确定map任务数时依次优先参考如下几个原则: 1)      每个map任务使用的内存不超过800M,尽量在500M以下 比如处理256MB数据需要的时间为10分钟,内存为800MB,此时如果处理128MB时,内存可以减小为400MB,则选择每一个map的处理数据量为128MB 2)      每个map任务运行时间控制在大约20分钟,最好1-3分钟 比如处理256MB数据需要的时间为30分钟,内存为200MB,则应该考虑减小map的计算时间,比如将每一个map的处理数据量设置为128MB,将时…
1.概述 不管程序性能有多高,机器处理能力有多强,都会有其极限.能够快速方便的横向与纵向扩展是Nut设计最重要的原则,以此原则形成以分布式并行计算为核心的架构设计.以分布式并行计算为核心的架构设计是Nut区别于Solr.Katta的地方. Nut是一个Lucene+Hadoop分布式并行计算搜索框架,能对千G以上索引提供7*24小时搜索服务.在服务器资源足够的情况下能达到每秒处理100万次的搜索请求. Nut开发环境:jdk1.6.0.23+lucene3.0.3+eclipse3.6.1+ha…
熟悉hadoop作业提交的人,只要明白streaming的参数就可以学会提交了,streaming提交作业比较灵活,支持多种语言,但是streaming有个缺陷就是,其封装的参数涉及到mapreduce类的就会默认其继承自org.apache.hadoop.mapred包中的类,因此继承自mapreduce包中的类不可用,但是有一个方法可以解决这个问题,就是将参数,通过-jobconf prop=value 的方式传进去. 这里的prop的名字必须是hadoop job file中那个名字.具体…
Mapper类4个函数的解析 Mapper有setup(),map(),cleanup()和run()四个方法.其中setup()一般是用来进行一些map()前的准备工作,map()则一般承担主要的处理工作,cleanup()则是收尾工作如关闭文件或者执行map()后的K-V分发等.run()方法提供了setup->map->cleanup()的执行模板. 在MapReduce中,Mapper从一个输入分片中读取数据,然后经过Shuffle and Sort阶段,分发数据给Reducer,在M…
在hadoop的源码中,基类Mapper类和Reducer类中都是只包含四个方法:setup方法,cleanup方法,run方法,map方法.如下所示: 其方法的调用方式是在run方法中,如下所示: 可以看出,在run方法中调用了上面的三个方法:setup方法,map方法,cleanup方法.其中setup方法和cleanup方法默认是不做任何操作,且它们只被执行一次.但是setup方法一般会在map函数之前执行一些准备工作,如作业的一些配置信息等:cleanup方法则是在map方法运行完之后最…
Hadoop 2:Mapper和Reduce Understanding and Practicing Hadoop Mapper and Reduce 1 Mapper过程 Hadoop将输入数据划分为等长的小数据块(默认为64MB)的过程叫做分片,并为每个分片构建一个Mappper任务,并由Mapper任务执行用户自定义的函数处理分片中的数据,mapper就是将这些数据中包含我们感兴趣或要处理的数据构成一个以键值存储的数据集,比如按年月分析NCDC每月最高温度信息(关于NCDC温度数据格式和…
1. Mapper类 首先 Mapper类有四个方法: (1) protected void setup(Context context) (2) Protected void map(KEYIN key,VALUEIN value,Context context) (3) protected void cleanup(Context context) (4) public void run(Context context) setup()方法一般用来加载一些初始化的工作,像全局文件\建立数据库…