机器学习之softmax回归笔记】的更多相关文章

本次笔记绝大部分转自https://www.cnblogs.com/Luv-GEM/p/10674719.html softmax回归 Logistic回归是用来解决二类分类问题的,如果要解决的问题是多分类问题呢?那就要用到softmax回归了,它是Logistic回归在多分类问题上的推广.此处神经网络模型开始乱入,softmax回归一般用于神经网络的输出层,此时输出层叫做softmax层. 1.softmax函数 首先介绍一下softmax函数,这个函数可以将一个向量(x1,x2,...,xK…
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模型(忘记了为什么看完<统计学习方法>第一章之后直接就跳去了第六章,好像是对"逻辑斯蒂"这个名字很感兴趣?...),对照<机器学习实战>写了几行代码敲了一个toy版本,当时觉得还是挺有意思的.我觉得这个模型很适合用来入门(但是必须注意这个模型有很多很多很多很多可以展开…
在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签 可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护.http://yann.lecun.com/exdb/mnist/ ) 回想…
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细推导. 1. 详细推导softmax代价函数的梯度 经典的logistics回归是二分类问题,输入向量$ x^{(i)}\in\Re^{n+1}$ 输出0,1判断\(y^{(i)}\in{\{0,1\}}\),Softmax回归模型是一种多分类算法模型,如图所示,输出包含k个类型,\(y^{(i)}\in{\…
本系列文章允许转载,转载请保留全文! [请先阅读][说明&总目录]http://www.cnblogs.com/tbcaaa8/p/4415055.html 1. 泊松回归 (Poisson Regression) 在生活中,经常会遇到一类问题需要对一段时间内某一小概率事件的发生次数建模,例如癌症.火灾等. 假设向量x表示引起这一事件发生的因素,向量θ表示因素的权重,则使用hθ(x)=exp(θTx)表示事件发生次数的期望.θTx位于指数位置,意味着其每增加1个单位,将导至事件发生次数的期望值翻…
二分类问题Sigmod 在 logistic 回归中,我们的训练集由  个已标记的样本构成: ,其中输入特征.(我们对符号的约定如下:特征向量  的维度为 ,其中  对应截距项 .) 由于 logistic 回归是针对二分类问题的,因此类标记 .假设函数(hypothesis function) 如下: 我们将训练模型参数 ,使其能够最小化代价函数 : 多分类问题 在一个多分类问题中,因变量y有k个取值,即.例如在邮件分类问题中,我们要把邮件分为垃圾邮件.个人邮件.工作邮件3类,目标值y是一个有…
Softmax回归用于处理多分类问题,是Logistic回归的一种推广.这两种回归都是用回归的思想处理分类问题.这样做的一个优点就是输出的判断为概率值,便于直观理解和决策.下面我们介绍它的原理和实现. 1.原理 a.问题 考虑\(K\)类问题,假设已知训练样本集\(D\)的\(n\)个样本\(\{(x_{i},t_{i})| i=1,...,n\}\) ,其中,\(x_i \in R^d\) 为特征向量,\(t_{i} \) 为样本类别标签,和一般而分类问题不同,Softmax回归采用了标签向量…
1.什么是回归?  是一种监督学习方式,用于预测输入变量和输出变量之间的关系,等价于函数拟合,选择一条函数曲线使其更好的拟合已知数据且更好的预测未知数据. 2.线性回归  于一个一般的线性模型而言,其目标就是要建立输入变量和输出变量之间的回归模型.该模型是既是参数的线性组合,同时也是输入变量的线性组合. 最小二乘法,代价函数(平方误差代价函数,加1/2是为了方便求导):  这里使用基函数(basis function)对上面的线性模型进行拓展,即:线性回归模型是一组输入变量x的非线性基函数的线性…
:softmax回归 当p(y|x,theta)满足多项式分布,通过GLM对其进行建模就能得到htheta(x)关于theta的函数,将其称为softmax回归. 教程中已经给了cost及gradient的求法.须要注意的是一般用最优化方法求解參数theta的时候,採用的是贝叶斯学派的思想,须要加上參数theta.   softmax回归 习题的任务就是用原有的像素数据集构建一个softmax回归模型进行分类.准确率略低 92.6%,. 而自我学习是用5~9之间的数据集当做无标签的数据集,然后构…
目录 softmax的基本概念 交叉熵损失函数 模型训练和预测 获取Fashion-MNIST训练集和读取数据 get dataset softmax从零开始的实现 获取训练集数据和测试集数据 模型参数初始化 对多维Tensor按维度操作 定义softmax操作 softmax回归模型 定义损失函数 定义准确率 训练模型 模型预测 softmax的简洁实现 初始化参数和获取数据 定义网络模型 初始化模型参数 定义损失函数 定义优化函数 训练 softmax的基本概念 分类问题 一个简单的图像分类…