halcon之最小二乘拟合直线】的更多相关文章

如果不了解最小二乘算法 请先阅读: Least squares的算法细节原理https://en.wikipedia.org/wiki/Least_squares 通常在halcon中拟合直线会用houghline或者 fitline.本文提供一种新的选择,用halcon的矩阵操作实现最小二乘拟合直线 首先随机生成一组数据 Mx:=[100:10:500] tuple_length(Mx,len) tuple_gen_const(len,5,r) Ma:=2 Mb:=40 tuple_rand(…
例图: 完整算法: read_image (Image, 'C:/Users/Administrator/Desktop/1.png') threshold (Image, Regions, , ) skeleton(Regions,TriangleSkeleton) gen_contours_skeleton_xld(TriangleSkeleton,TriangleContours,1,'filter') segment_contours_xld(TriangleContours,Conto…
工业相机拍摄的图像中,由于摄像质量的限制,图像中的直线经过处理后,会表现出比较严重的锯齿.在这种情况下求取直线的倾角(其实就是直线的斜率),如果是直接选取直线的开始点和结束点来计算,或是用opencv自带的哈夫曼直线方法,都会引起较大的角度偏差,一般会达到好几度.误差这么大,显然达不到工控要求.后来尝试采取直线点集做最小二乘拟合,误差缩小到0.5以下.以下是算法的代码: //最小二乘拟合计算直线的倾角 int pointCount = pointVect.size(); if (pointCou…
在物理实验中经常要观测两个有函数关系的物理量.根据两个量的许多组观测数据来确定它们的函数曲线,这就是实验数据处理中的曲线拟合问题.这类问题通常有两种情况:一种是两个观测量x与y之间的函数形式已知,但一些参数未知,需要确定未知参数的最佳估计值:另一种是x与y之间的函数形式还不知道,需要找出它们之间的经验公式.后一种情况常假设x与y之间的关系是一个待定的多项式,多项式系数就是待定的未知参数,从而可采用类似于前一种情况的处理方法. 一.最小二乘法原理 在两个观测量中,往往总有一个量精度比另一个高得多,…
突然有个想法,能否通过学习一阶RC电路的阶跃响应得到RC电路的结构特征——时间常数τ(即R*C).回答无疑是肯定的,但问题是怎样通过最小二乘法.正规方程,以更多的采样点数来降低信号采集噪声对τ估计值的影响.另外,由于最近在捣鼓Jupyter和numpy这些东西,正好尝试不用matlab而用Jupyter试试看.结果是意外的好用,尤其是在Jupyter脚本中插入LaTeX格式的公式的功能,真是太方便了!尝试了直接把纸上手写的公式转换到Jupyter脚本中的常见工具软件. 以下原创内容欢迎网友转载,…
[MXNet逐梦之旅]练习一·使用MXNet拟合直线手动实现 code #%% from matplotlib import pyplot as plt from mxnet import autograd, nd import random #%% num_inputs = 1 num_examples = 100 true_w = 1.56 true_b = 1.24 features = nd.arange(0,10,0.1).reshape((-1, 1)) labels = true_…
import numpy as np # from enthought.mayavi import mlab ''' ogrid[-1:5:6j,-1:5:6j] [array([[-1. ], [ 0.2], [ 1.4], [ 2.6], [ 3.8], [ 5. ]]), array([[-1. ,  0.2,  1.4,  2.6,  3.8,  5. ]])] ''' x,y = np.ogrid[-2:2:20j,-2:2:20j]  #返回两个数组,一个长度为1,一个列数为1.前三…
import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.family'] = ['sans-serif'] plt.rcParams['font.sans-serif'] = ['SimHei'] def linear_regression(x, y): N = len(x) sumx = sum(x) sumy = sum(y) sumx2 = sum(x ** 2) sumxy = sum(x * y) A…
Scipy库在numpy库基础上增加了众多数学,科学及工程计算中常用库函数.如线性代数,常微分方程数值求解,信号处理,图像处理,稀疏矩阵等. 如下理解通过Scipy进行最小二乘法拟合运算 最小二乘拟合(optimize子函数) from scipy.optimize import leastsq optimize函数含有实现最小二乘法的函数 leastsq, 如下通过对正弦函数的拟合,求得最小二乘拟合参数.func三参数A,k,theta分别表示对应振幅,频率,相角. import numpy…
代码下载地址: 1.Matlab版本:http://pan.baidu.com/s/1eQIzj3c.进入目录后,请自行定位到该博客的源代码与数据的目录“…