Scalable Object Detection using Deep Neural Networks 作者: Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov 引用: Erhan, Dumitru, et al. "Scalable object detection using deep neural networks." Proceedings of the IEEE Confere…
原文:https://arxiv.org/abs/1312.2249…
多尺度目标检测 Multiscale Object Detection 我们在输入图像的每个像素上生成多个锚框.这些定位框用于对输入图像的不同区域进行采样.但是,如果锚定框是以图像的每个像素为中心生成的,很快就会有太多的锚框供我们计算.例如,我们假设输入图像的高度和宽度分别为561和728像素.如果以每个像素为中心生成五个不同形状的锚框,则超过两百万个锚框(561×728×5)需要在图像上进行预测和标记. 减少锚箱数量并不困难.一种简单的方法是对输入图像中的一小部分像素进行均匀采样,并生成以采样…
模型和方法: 在深度学习求解目标检测问题之前的主流 detection 方法是,DPM(Deformable parts models), 度量与评价: mAP:mean Average Precision 数据集: voc2007 the PASCAL Visual Object Classes Challenge 2007…
一. 找到最好的工具 "工欲善其事,必先利其器",如果你想找一个深度学习框架来解决深度学习问题,TensorFlow 就是你的不二之选,究其原因,也不必过多解释,看过其优雅的代码架构和工程化实现之后,相信这个问题不会有人再提,这绝非 Caffe an so on 所能比拟的. 回到题头 - 目标检测,相信你一定看过这篇 Paper: Speed/accuracy trade-offs for modern convolutional object detectors, Huang J,…
3.1目标定位 (1)案例1:在构建自动驾驶时,需要定位出照片中的行人.汽车.摩托车和背景,即四个类别.可以设置这样的输出,首先第一个元素pc=1表示有要定位的物体,那么用另外四个输出元素表示定位框的中心坐标和宽高,再用3个输出元素one-hot表示是三个类别中的哪一类.当第一个元素pc=0时表示是背景,然后就不需要考虑其他输出了,如下图所示(需要注意的是是根据图片的标签y来决定使用几个元素的): (2)损失函数:上图中左下角是使用了平方误差损失函数这是为了方便解释方便而使用的.实际使用中pc使…
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 引用: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE…
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 摘要 最先进的目标检测网络依靠区域提出算法来假设目标的位置.SPPnet[1]和Fast R-CNN[2]等研究已经减少了这些检测网络的运行时间,使得区域提出计算成为一个瓶颈.在这项工作中,我们引入了一个区域提出网络(RPN),该网络与检测网络共享全图像的卷积特征,从而使近乎零成本的区域提出成为可能.RPN是一个全卷积网络,可以同时在每个位…
目录 Single Shot Detectors for Object Detection Deep learning-based object detection with OpenCV   这篇文章只是基于OpenCV使用SSD算法执行目标检测:不涉及到SSD的理论原理.不涉及训练过程:也就是说仅仅使用训练好的模型文件基于OpenCV做测试:包括图片和视频:   只用作笔记,原教程地址:Object detection with deep learning and OpenCV Single…
[论文笔记]Malware Detection with Deep Neural Network Using Process Behavior 论文基本信息 会议: IEEE(2016 IEEE 40th Annual Computer Software and Applications Conference) 单位: Nagoya University(名古屋大学).NTT Secure Platform Laboratories(NTT安全平台实验室) 方法概述 数据:81个恶意软件日志文件…