TensorFlow 分布式实践】的更多相关文章

大数据时代,基于单机的建模很难满足企业不断增长的数据量级的需求,开发者需要使用分布式的开发方式,在集群上进行建模.而单机和分布式的开发代码有一定的区别,本文就将为开发者们介绍,基于TensorFlow进行分布式开发的两种方式,帮助开发者在实践的过程中,更好地选择模块的开发方向. 基于TensorFlow原生的分布式开发 分布式开发会涉及到更新梯度的方式,有同步和异步的两个方案,同步更新的方式在模型的表现上能更快地进行收敛,而异步更新时,迭代的速度则会更加快.两种更新方式的图示如下: 同步更新流程…
此wiki主要介绍分布式环境使用的一些条件,一直所要注意的内容: 确保在此之前阅读过TensorFlow for distributed 1.集群描述 当前tensorflow 的版本(0.8.0),并没有提供统一的资源管理器,所以若要启动处理节点需要手动完成,并且要每个节点一份完整的集群描述,目的是让该节点能够找到其他的节点 例如:启动Server的命令如下 python ./tensorflow/tools/dist_test/server/grpc_tensorflow_server.py…
https://blog.csdn.net/hjimce/article/details/61197190  tensorflow分布式训练 https://cloud.tencent.com/developer/article/1006345  分布式 TensorFlow,分布式原理.最佳实践 https://www.jianshu.com/p/fdb93e44a8cc  TensorFlow分布式全套(原理,部署,实例) https://zhuanlan.zhihu.com/p/30914…
[源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 目录 [源码解析] TensorFlow 分布式环境(2)---Master 静态逻辑 1. 总述 2. 接口 2.1 接口规范 2.2 MasterInterface 2.3 调用 3. LocalMaster 3.1 定义 3.2 注册 3.3 查找 3.4 功能 4. GrpcRemoteMaster 4.1 定义 4.2 功能 4.2.1 CreateSession 4.2.2 Master Service…
慕K网-299元-基于Python玩转人工智能最火框架 TensorFlow应用实践 需要联系我,QQ:1844912514…
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleNet:多维度识别 4. ResNet:机器超越人类识别 5. DeepFace:结构化图片的特殊处理 6. U-Net:图片生成网络 7. 实例:剖析VGG,用模型进行模型参数可视化,特征提取,目标预测 期待目标: 1. 掌握AlexNet结构特点,神经网络各层之间特征传导关系,模型参数总数计算 2…
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实例:卷积神经网络MNIST分类 期待目标: 1. 清楚神经网络优化原理,掌握反向传播计算. 2. 掌握卷积神经网络卷积层的结构特点,关键参数,层间的连接方式. 3. 了解不同卷积神经网络功能层的作用,会进行简单的卷积神经网络结构设计. 4. 能够运行TensorFlow卷积神经网络 MNIST. …
Python玩转人工智能最火框架 TensorFlow应用实践 (一个人学习或许会很枯燥,但是寻找更多志同道合的朋友一起,学习将会变得更加有意义✌✌) 全民人工智能时代,不甘心只做一个旁观者,那就现在开始,从人工智能最流行的框架TensorFlow学起 第1章 课程整体介绍 课程背景简介,项目成果演示,知识点和软件简介,让大家对接下来的学习心中有数 1-1 课程整体介绍及导学 第2章 人工智能基础知识 人工智能.神经网络.机器学习.深度学习.激活函数.过拟合.卷积神经网络.循环神经网络等知识的循…
java 分布式实践 spring boot cloud实践 开源的全链路跟踪很多,比如 Spring Cloud Sleuth + Zipkin,国内有美团的 CAT 等等. 其目的就是当一个请求经过多个服务时,可以通过一个固定值获取整条请求链路的行为日志,基于此可以再进行耗时分析等,衍生出一些性能诊断的功能. 不过对于我们而言,首要目的就是 Trouble Shooting,出了问题需要快速定位异常出现在什么服务,整个请求的链路是怎样的. 为了让解决方案轻量,我们在日志中打印 Request…
基于Python玩转人工智能最火框架  TensorFlow应用实践 随着 TensorFlow 在研究及产品中的应用日益广泛,很多开发者及研究者都希望能深入学习这一深度学习框架.而在昨天机器之心发起的框架投票中,2144 位参与者中有 1441 位都在使用 TensorFlow 框架,是所有框架中使用率最高的.但 TensorFlow 这种静态计算图有一定的学习成本,因此也阻挡了很多准备入坑的初学者.本文介绍了学习 TensorFlow 的系列教程,旨在通过简单的理论与实践帮助初学者一步步掌握…
Python玩转人工智能最火框架 TensorFlow应用实践 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时候可以关注下面几点: 1.为了追求精简简洁牺牲了部分实用性,导致不足以达到某些工作的需要 2.大部分是实战课程弱化了其他技术点的不足,无法全面了解python,但是很多都是刚接触python的(很致命) 3.因为是录播课程导致某些问题不能及时去解决,没人交流(这个最烦)  所…
本文介绍有关 TensorFlow 分布式的两个实际用例,分别是数据并行(将数据分布到多个 GPU 上)和多服务器分配. 玩转分布式TensorFlow:多个GPU和一个CPU展示一个数据并行的例子,其中数据被切分到多个 GPU 上.具体做法考虑在单个 GPU 上运行矩阵乘法的这段代码: 通过图内拷贝模式中对代码进行了分割,如以下两个不同 GPU 的代码片段所示.请注意,CPU 充当 master 节点,分配计算图,并收集最终结果: 这是一个非常简单的案例,其中计算图由作为 master 的 C…
TensorFlow分布式在Amazon AWS上运行 Amazon AWS 提供采用 NVIDIA K8 GPU 的 P2.x 机器.为了能够使用,第一步还需要创建一个 Amazon AWS 账户,如果还没有,可以使用链接https://portal.aws.amazon.com/billing/signup?nc2=h_ct redirect_url=https%3A%2F%2Faws.amazon.com%2Fregistration-confirmation#/start (https:…
[翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems" 目录 [翻译] TensorFlow 分布式之论文篇 "TensorFlow : Large-Scale Machine Learning on Heterogeneous Distributed Systems" 1. 原文摘要 2. 编程模型和基本概念 2…
[翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow" 目录 [翻译] TensorFlow 分布式之论文篇 "Implementation of Control Flow in TensorFlow" 1. 概览 2. 控制流原语 3. 控制流结构的编译 3.1 条件表达式 3.2 while 循环 4. 实现 5. 分布式条件表达式 6. 分布式的 while 循环 7. 自动…
[源码解析] TensorFlow 分布式环境(1) --- 总体架构 目录 [源码解析] TensorFlow 分布式环境(1) --- 总体架构 1. 总体架构 1.1 集群角度 1.1.1 概念 1.1.2 示意图 1.1.3 创建 1.1.3.1 创建集群 1.1.3.2 创建任务 1.1.3.3 指定设备 1.2 分布式角度 1.2.1 概念 1.2.2 示意图 1.3 系统角度 1.3.1 概念 1.3.2 示意图 1.4 图操作角度 1.5 通信角度 2. Server 2.1 接…
[源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑 目录 [源码解析] TensorFlow 分布式环境(3)--- Worker 静态逻辑 1. 继承关系 1.1 角色概念 1.2 接口 1.3 WorkerInterface 派生类 2. GrpcRemoteWorker 2.1 定义 2.2 生成 2.3 发送请求 3. Worker Service 3.3.1 WorkerInterface 3.3.2 概念梳理 3.3.4 WorkerInterface…
[源码解析] TensorFlow 分布式环境(4) --- WorkerCache 目录 [源码解析] TensorFlow 分布式环境(4) --- WorkerCache 1. WorkerCache 1.1 如何使用 1.2 配置 1.3 工厂类 1.3.1 ParseChannelSpec 1.3.2 NewGrpcChannelCache 1.3.3 NewGrpcWorkerCacheWithLocalWorker 1.4 WorkerCacheInterface 1.4.1 接口…
[源码解析] TensorFlow 分布式环境(5) --- Session 目录 [源码解析] TensorFlow 分布式环境(5) --- Session 1. 概述 1.1 Session 分类 1.2 会话流程 1.2.1 MasterSession 生命周期 1.2.2 WorkerSession 生命周期 2. GrpcSession 2.1 定义 2.2 注册&工厂类 2.3 创建GrpcSession 2.4 创建MasterSession 2.4.1 GrpcRemoteMa…
[源码解析] TensorFlow 分布式环境(6) --- Master 动态逻辑 目录 [源码解析] TensorFlow 分布式环境(6) --- Master 动态逻辑 1. GrpcSession 1.1 运行 1.2 GrpcRemoteMaster 2. Master 2.1 总体概述 2.2 建立 & 剪枝 2.2.1 建立计算图 2.2.2 剪枝 2.3 切分注册 2.2.1 原理 2.2.2 配置 2.2.3 切分 2.2.3.1 Partition 2.2.3.2 AddD…
[源码解析] TensorFlow 分布式环境(7) --- Worker 动态逻辑 目录 [源码解析] TensorFlow 分布式环境(7) --- Worker 动态逻辑 1. 概述 1.1 温故 1.2 知新 2. 注册子图 2.1 GrpcWorker 2.2 GraphMgr 2.2.1 定义 2.2.2 注册图 3. 运行子图 3.1 Service 3.2 GrpcWorker 3.3 GraphMgr 3.4 小结 4. 总结 0xFF 参考 前文中,Master 在流程之中先…
[源码解析] TensorFlow 分布式环境(8) --- 通信机制 目录 [源码解析] TensorFlow 分布式环境(8) --- 通信机制 1. 机制 1.1 消息标识符 1.1.1 定义 1.1.2 创建 1.2 Rendezvous 1.2.1 接口类 1.2.2 基础实现 Rendezvous 1.2.3 跨进程 RemoteRendezvous 1.2.4 BaseRemoteRendezvous 1.2.5 RpcRemoteRendezvous 1.3 管理类 1.3.1…
[源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇 目录 [源码解析] TensorFlow 分布式 DistributedStrategy 之基础篇 1. StrategyBase 1.1 初始化 1.2 使用 1.3 CTL 1.4 Scope 1.4.1 使用 1.4.2 功能 1.4.3 Scope 范围 1.5 StrategyExtendedV2 1.5.1 locality 1.5.2 如何更新 1.6 继承关系 2. 读取数据 2.1 直…
[源码解析] TensorFlow 分布式之 MirroredStrategy 目录 [源码解析] TensorFlow 分布式之 MirroredStrategy 1. 设计&思路 1.1 主要逻辑 1.2 使用 1.3 分析思路 2. 定义 2.1 MirroredStrategy 2.2 MirroredExtended 3. 初始化 3.1 初始化多worker 3.1.1 MultiWorkerMirroredStrategy 3.1.2 CollectiveAllReduceExte…
[源码解析] TensorFlow 分布式之 MirroredStrategy 分发计算 目录 [源码解析] TensorFlow 分布式之 MirroredStrategy 分发计算 0x1. 运行 1.1 基类 Strategy 1.2 StrategyExtendedV1 1.3 MirroredExtended 0x2. mirrored_run 2.1 call_for_each_replica 2.2 建立线程 2.3 线程定义 0x3. Context 3.1 ensure_ini…
[源码解析] TensorFlow 分布式之 ParameterServerStrategy V1 目录 [源码解析] TensorFlow 分布式之 ParameterServerStrategy V1 1. 思路 1.1 总体逻辑 1.2 使用 1.3 定义 2. ParameterServerStrategyExtended 2.1 初始化 2.2 分配设备 2.2.1 replica_device_setter 2.2.2 _RoundRobinStrategy 2.2.3 _Repli…
[源码解析] TensorFlow 分布式之 ParameterServerStrategy V2 目录 [源码解析] TensorFlow 分布式之 ParameterServerStrategy V2 1. 如何使用 1.1 训练方法 1.2 集群 1.3 使用 Model.fit API 进行训练 1.4 使用自定义循环进行训练 1.5 建立集群 2. 初始化 2.1 用例 2.2 集群设置 2.2.1 设置 "TF_CONFIG" 环境变量 2.2.2 使用二进制文件 2.3…
[源码解析] TensorFlow 分布式之 ClusterCoordinator 目录 [源码解析] TensorFlow 分布式之 ClusterCoordinator 1. 思路 1.1 使用 1.2 问题点 2. 定义 2.1 Schedule 2.2 Join 2.3 Done 2.4 Fetch 3. 数据 3.1 建立数据集 3.2 PerWorkerDistributedDataset 3.3 PerWorkerDatasetFromDatasetFunction 3.4 _cr…
最近一直在研究机器学习,看过两本机器学习的书,然后又看到深度学习,对深度学习产生了浓厚的兴趣,希望短时间内可以做到深度学习的入门和实践,因此写一个深度学习系列吧,通过实践来掌握<深度学习>和 TensorFlow,希望做成一个系列出来,加油! 学习内容包括了: 1. 小象学院的<深度学习>课程 2. TensorFlow的官方教程 3. 互联网上跟深度学习相关的教程 整个深度学习,学习的过程是通过一条主线串联起来的,这个知识结构总结的还是蛮好的. 1. 线性回归 - 线性回归是基础…
“我不知道什么是爱,但我知道什么是不爱” --One Class Learning的自白 一.单分类简介 如果将分类算法进行划分,根据类别个数的不同可以分为单分类.二分类.多分类,常见的分类算法主要解决二分类和多分类问题,预测一封邮件是否是垃圾邮件是一个典型的二分类问题,手写体识别是一个典型的多分类问题,这些算法并不能很好的应用在单分类上,但单分类问题在工业界广泛存在,由于每个企业刻画用户的数据都是有限的,很多二分类问题很难找到负样本,比如通过用户的搜索记录预测一个用户是否有小孩,可以通过规则筛…