#约数#洛谷 4296 [AHOI2007]密码箱】的更多相关文章

P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O(nlogn)$,显然过不了$n<=10^9$ #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> #define LL long long using namesp…
洛谷P1463:https://www.luogu.org/problemnew/show/P1463 思路 约数个数公式  ai为质因数分解的质数的指数 定理: 设m=2a1*3a2*...*pak(其中p为第k大的质数)是Antiprime数 则必有a1≥a2≥a3≥...≥ak≥0 因此如果有两个值约数个数相同 则要取值比较小的那个 剪枝: 有了这个定理我们就可以搜索质数的指数 由于231已经远远超过数据规模 因此我们只需要搜到31层 质因子的个数最多只有10个(所有质因子相乘得到他们可以…
洛谷P1445:https://www.luogu.org/problemnew/show/P1445 推导过程 1/x+1/y=1/n! 设y=n!+k(k∈N∗) 1/x​+1/(n!+k)​=1/n!​ 等式两边同乘x*n!*(n!+k)得 n!(n!+k)+xn!=x(n!+k) 移项得 n!(n!+k)=x(n!+k)−xn!=xk x=n!(n!+k)​/k=(n!)2​/k+n! 因为x为正整数 所以(n!)2​/k+n!为正整数0. 因为n!为正整数 所以只要(n!)2​/k为正…
洛谷P4902乘积 题意简述: 给 $ t $ 组 $ (a,b) $ 求: $ \prod_{i=A}^{B}\prod_{j=1}^{i}(\frac{i}{j})^{\lfloor \frac{i}{j} \rfloor} (\bmod  19260817) $ $ solution: $ 考试都去想 $ T2 $ 了-- 题目是真的不错,首先看到题面我们可以想到三个角度: 预处理再回答 分子分母可以分开求 将询问拆成 $ (1,b)/(1,a-1) $ 于是可以默认从一开始 然后我们先看…
LOJ 题面传送门 / 洛谷题面传送门 题意: 求 \(\sum\limits_{i=1}^n\sum\limits_{j=1}^md(ij)\),\(d(x)\) 为 \(x\) 的约数个数. \(n,m \leq 5 \times 10^4\). 抛出一个引理:\(d(ij)=\sum\limits_{x|i}\sum\limits_{y|j}[\gcd(x,y)=1]\),该定理将在这篇博客结束证明. 知道这个定理之后,就可以按照套路开始推式子了: \[\begin{aligned}&an…
个人背景: 上午9:30放学,然后因为学校举办读书工程跟同学去书城选书,中午回来开始打比赛,下午又回老家,中间抽出一点时间调代码,回家已经8:50了 也许是7月月赛时“连蒙带骗”AK的太幸运然而因同学的id评测过判代码雷同扣100分后while(true) rp--;本次是一个凄惨..... 我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了 我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了我太弱了 我太弱了我…
洛谷1120 小木棍 题目描述 乔治有一些同样长的小木棍,他把这些木棍随意砍成几段,直到每段的长都不超过50.     现在,他想把小木棍拼接成原来的样子,但是却忘记了自己开始时有多少根木棍和它们的长度.     给出每段小木棍的长度,编程帮他找出原始木棍的最小可能长度. 输入输出格式 输入格式: 输入文件共有二行. 第一行为一个单独的整数N表示砍过以后的小木棍的总数,其中N≤60 (管理员注:要把超过50的长度自觉过滤掉,坑了很多人了!) 第二行为N个用空个隔开的正整数,表示N根小木棍的长度.…
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------------------------------------ #include<cstdio> #include<cstring> #include<algorithm> #include<cmath>   using namespace std;   type…
洛谷4月月赛R2 打酱油... A.koishi的数学题  线性筛约数和就可以\(O(N)\)了... #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <cmath> #include <ctime> using namespace std; typedef long long ll; const int N=…
洛谷题目传送门 蒟蒻惊叹于一道小小的数论题竟能涉及这么多知识点!不过,掌握了这些知识点,拿下这道题也并非难事. 题意一行就能写下来: 给定\(N,G\),求\(G^{\sum \limits _{d|N}C(N,d)}(\mod999911659)\) 乍一看,指数这么大,要怎么处理好呢?上费马小定理. 平时用费马小定理求逆元用多了,\(a^{p-2}\equiv inv(a)(\mod p)\),搞得蒟蒻差点忘了它原本的样子\(a^{p-1}=1(\mod p)\),那原式的指数\(\sum…