Weka EM 协方差】的更多相关文章

Weka EM covariance description 1: Dear All, I am trying to find out what is the real meaning of the minStdDev parameter in the EM clustering algorithm. Can anyone help me? I have not looked at the code, but I suspect that the minStdDev is used as the…
EM算法: 在Eclipse中写出读取文件的代码然后调用EM算法计算输出结果: package EMAlg; import java.io.*; import weka.core.*; import weka.filters.Filter; import weka.filters.unsupervised.attribute.Remove; import weka.clusterers.*; public class EMAlg { public EMAlg() { // TODO Auto-g…
private void EM_Init (Instances inst) throws Exception { int i, j, k; // 由于EM算法对初始值较敏感,故选择run k means 10 times and choose best solution SimpleKMeans bestK = null; double bestSqE = Double.MAX_VALUE; for (i = 0; i < 10; i++) { SimpleKMeans sk = new Sim…
转自:http://blog.csdn.net/abcjennifer/article/details/8198352 在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gauss…
本来想自己写一个EM算法的,但是操作没两步就进行不下去了.对那些数学公式着实不懂.只好从网上找找代码,看看别人是怎么做的. 代码:来自http://blog.sina.com.cn/s/blog_98b365150101f2xb.html 经验证可用 %EM M=; % M个高斯分布混合 N=; % 样本数 th=0.000001; % 收敛阈值 K=; % 样本维数 % 待生成数据的参数 a_real =[/;/;/];%混合模型中基模型高斯密度函数的权重 mu_real=[ ; ];%均值…
一.引言 我们谈到了用 k-means 进行聚类的方法,这次我们来说一下另一个很流行的算法:Gaussian Mixture Model (GMM).事实上,GMM 和 k-means 很像,不过 GMM 是学习出一些概率密度函数来(所以 GMM 除了用在 clustering 上之外,还经常被用于 density estimation ),简单地说,k-means 的结果是每个数据点被 assign 到其中某一个 cluster 了,而 GMM 则给出这些数据点被 assign 到每个 clu…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了详细说明.本文主要针对如何用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每个 GMM 由 K 个 Gaussian 分布组成,每个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率密度函…
GMM及EM算法 标签(空格分隔): 机器学习 前言: EM(Exception Maximizition) -- 期望最大化算法,用于含有隐变量的概率模型参数的极大似然估计: GMM(Gaussian Mixture Model) -- 高斯混合模型,是一种多个高斯分布混合在一起的模型,主要应用EM算法估计其参数: 本篇博客首先从简单的k-means算法给出EM算法的迭代形式,然后用GMM的求解过程给出EM算法的宏观认识:最后给出EM的标准形式,并分析EM算法为什么收敛. K-Means Cl…
在聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明. 本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明. 1. GMM模型: 每一个 GMM 由 K 个 Gaussian 分布组成.每一个 Gaussian 称为一个"Component",这些 Component 线性加成在一起就组成了 GMM 的概率…
假设有一堆数据点,它是由两个线性模型产生的.公式如下: 模型参数为a,b,n:a为线性权值或斜率,b为常数偏置量,n为误差或者噪声. 一方面,假如我们被告知这两个模型的参数,则我们可以计算出损失. 对于第i个数据点,第k个模型会预测它的结果 则,与真实结果的差或者损失记为: 目标是最小化这个误差. 但是仍然不知道具体哪些数据由对应的哪个模型产生的. 另一方面,假设我们被告知这些数据对应具体哪个模型,则问题简化为求解约束条件下的线性方程解 (实际上可以计算出最小均分误差下的解,^-^). 这两个假…