Josef和Andrew在2003年的ICCV上发表的论文[10]中,将文档检索的方法借鉴到了视频中的对象检测中.他们首先将图像的特征描述类比成单词,并建立了基于SIFT特征的vusual word dictionary,结合停止词.TF-IDF和余弦相似度等思想检索包含相同对象的图像帧,最后基于局部特征的匹配和空间一致性完成了对象的匹配.文档检索与计算机视觉之间渊源颇深,在CV领域常常会遇到要将图像的多个局部特征描述融合为一条特征向量的问题,比如常用的BoVW.VLAD和Fisher Vect…
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar…
翻译 局部不变特征探测器:一项调查 摘要 -在本次调查中,我们概述了不变兴趣点探测器,它们如何随着时间的推移而发展,它们如何工作,以及它们各自的优点和缺点.我们首先定义理想局部特征检测器的属性.接下来是对过去四十年中根据不同类别的特征提取方法组织的文献的概述.然后,我们对选择的方法进行更详细的分析,这些方法对研究领域产生了特别重大的影响.最后总结并展望未来的研究方向. 1引言 在本节中,我们将讨论局部(不变)特征的本质.这个词我们的意思是什么?使用局部特征有什么好处?我们可以用它们做什么?理想的…
此部分是计算机视觉部分,主要侧重在底层特征提取,视频分析,跟踪,目标检测和识别方面等方面.对于自己不太熟悉的领域比如摄像机标定和立体视觉,仅仅列出上google上引用次数比较多的文献.有一些刚刚出版的文章,个人非常喜欢,也列出来了. 33. SIFT关于SIFT,实在不需要介绍太多,一万多次的引用已经说明问题了.SURF和PCA-SIFT也是属于这个系列.后面列出了几篇跟SIFT有关的问题.[1999 ICCV] Object recognition from local scale-invar…
Problem: TSC, time series classification; Traditional TSC: find global similarities or local patterns/subsequence(shapelet). We extract statistical features from VG to facilitate TSC Introduction: Global similarity: the difference between TSC and oth…
This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj…
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society 2017, ISBN 978-1-5386-1032-9 Oral Session 1 Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Corre…
CVPR2017 paper list Machine Learning 1 Spotlight 1-1A Exclusivity-Consistency Regularized Multi-View Subspace Clustering Xiaojie Guo, Xiaobo Wang, Zhen Lei, Changqing Zhang, Stan Z. Li Borrowing Treasures From the Wealthy: Deep Transfer Learning Thro…
ColorDescriptor software v4.0 Created by Koen van de Sande, (c) University of Amsterdam Note: Any commercial use of this software requires a license. For additional information, contact Koen van de Sande) Introduction This document contains the usage…
Paper about Event Detection. #@author: gr #@date: 2014-03-15 #@email: forgerui@gmail.com 看一些相关的论文. 1. <Efficient Visual Event Detection using Volumetric Features> ICCV 2005 扩展2D box 特征到3D时空特征. 构建一个实时的检测器基于容积特征. 采用传统的兴趣点方法检测事件. 2. <ARMA-HMM: A New…