首先来说一下什么是左式堆: A:左式堆是专门用来解优先队列合并的麻烦(任意二叉堆的合并都必须重新合并,O(N)的时间). 左式堆的性质: 1.定义零路经长:节点从没有两个两个儿子节点的路经长,把NULL定义为-1 2.堆性性质(x的键值比x左右两个儿子节点的键值要大或者要小) 3.堆中的每一个节点x,左儿子的零路经长至少与右儿子的零路经长一样长. 4.节点的距离等于右节点的距离+1. 引理: 若左式堆的距离定义为一定值,则节点数最少的左式堆是完全二叉堆. 定理: 若左式堆的距离为k,则这棵树最少…
左式堆(Leftist Heaps)又称作最左堆.左倾堆.左式堆作为堆的一种,保留了堆的一些属性. 第1,左式堆仍然以二叉树的形式构建: 第2,左式堆的任意结点的值比其子树任意结点值均小(最小堆的特性).但和一般的二叉堆不同,左式堆不再是一棵完全二叉树(Complete tree),而且是一棵极不平衡的树. package com.wpr.collection; /** * 左式堆:二叉堆缺点,首先,只能查找最小元素:其次,将两个堆合并的操作很麻烦 * 注意:所有支持有效合并的高级数据结构都需要…
实现优先队列结构主要是通过堆完成,主要有:二叉堆.d堆.左式堆.斜堆.二项堆.斐波那契堆.pairing 堆等. 1. 二叉堆 1.1. 定义 完全二叉树,根最小. 存储时使用层序. 1.2. 操作 (1). insert(上滤) 插入末尾 26,不断向上比较,大于26则交换位置,小于则停止. (2). deleteMin(下滤) 提取末尾元素,放在堆顶,不断下滤: (3). 其他操作: 都是基于insert(上滤)与deleteMin(下滤)的操作. 减小元素:减小节点的值,上滤调整堆. 增大…