CatDCGAN项目复现与对抗网络初识】的更多相关文章

[重磅]无监督学习生成式对抗网络突破,OpenAI 5大项目落地 [新智元导读]"生成对抗网络是切片面包发明以来最令人激动的事情!"LeCun前不久在Quroa答问时毫不加掩饰对生成对抗网络的喜爱,他认为这是深度学习近期最值得期待.也最有可能取得突破的领域.生成对抗学习是无监督学习的一种,该理论由 Ian Goodfellow 提出,此人现在 OpenAI 工作.作为业内公认进行前沿基础理论研究的机构,OpenAI 不久前在博客中总结了他们的5大项目成果,结合丰富实例介绍了生成对抗网络…
一.文献解读 我们知道GAN 在图像修复时更容易得到符合视觉上效果更好的图像,今天要介绍的这篇文章——ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks,它 发表于 ECCV 2018 的 Workshops,作者在 SRGAN 的基础上进行了改进,包括改进网络的结构.判决器的判决形式,以及更换了一个用于计算感知域损失的预训练网络. 超分辨率生成对抗网络(SRGAN)是一项开创性的工作,能够在单一图像超分辨率中生成逼…
渐进式增长生成对抗网络(PGGAN) 使用 TensorFlow和 TensorFlow Hub( TFHUB)构建渐进式增长生成对抗网络( Progressive GAN, PGGAN或 PROGAN)--一种能够生成全高清的具有照片级真实感图像的前沿技术.这项技术在顶级机器学习会议ICLR2018上提出时引起了轰动,以至于谷歌立即将其整合为 TensorFlow Hub中的几个模型之一.这项技术被深度学习的鼻祖之一 Yoshua Bengio称赞为"好得令人难以置信",在其发布后,…
  https://sigmoidal.io/beginners-review-of-gan-architectures/ 嗨,大家好!像许多追随AI进展的人一样,我无法忽略生成建模的最新进展,尤其是图像生成中生成对抗网络(GAN)的巨大成功.看看这些样本:它们与真实照片几乎没有区别!   Samples from BigGAN: https://openreview.net/pdf?id=B1xsqj09Fm 从2014年到2018年,面部生成的进展也非常显着:       我对这些结果感到非…
本文由  网易云发布. “知物由学”是网易云易盾打造的一个品牌栏目,词语出自汉·王充<论衡·实知>.人,能力有高下之分,学习才知道事物的道理,而后才有智慧,不去求问就不会知道.“知物由学”希望通过一篇篇技术干货.趋势解读.人物思考和沉淀给你带来收获的同时,也希望打开你的眼界,成就不一样的你.当然,如果你有不错的认知或分享,也欢迎通过邮件(zhangyong02@corp.netease.com)投稿. 以下是正文: 作者:Brad Harris,安全研究员,Brad曾在公共和私营部门的网络和计…
生成对抗网络的概念 上一篇中介绍的VAE自动编码器具备了一定程度的创造特征,能够"无中生有"的由一组随机数向量生成手写字符的图片. 这个"创造能力"我们在模型中分为编码器和解码器两个部分.其能力来源实际上是大量样本经过学习编码后,在数字层面对编码结果进行微调,再解码生成图片的过程.所生成的图片,是对原样本图的某种变形模仿. 今天的要介绍的生成对抗网络(GAN)也具备很类似的功能,所建立的模型,能够生成非常接近样本图片的结果. 相对于VAE,生成对抗网络GAN更接近一…
论文pdf 地址:https://arxiv.org/pdf/1609.04802v1.pdf 我的实际效果 清晰度距离我的期待有距离. 颜色上面存在差距. 解决想法 增加一个颜色判别器.将颜色值反馈给生成器 srgan论文是建立在gan基础上的,利用gan生成式对抗网络,将图片重构为高清分辨率的图片. github上有开源的srgan项目.由于开源者,开发时考虑的问题更丰富,技巧更为高明,导致其代码都比较难以阅读和理解. 在为了充分理解这个论文.这里结合论文,开源代码,和自己的理解重新写了个s…
https://juejin.im/post/5d3fb44e6fb9a06b2e3ccd4e 生成对抗网络(GAN)是生成模型的一种神经网络架构. 生成模型指在现存样本的基础上,使用模型来生成新案例,比如,基于现存的照片集生成一组与其相似却有细微差异的新照片. GAN是使用两个神经网络模型训练而成的一种生成模型.其中一个称为"生成器"或"生成网络"模型,可学习生成新的可用案例.另一个称为"判别器"或"判别网络",可学习判别生…
来源:https://en.wikipedia.org/wiki/Edmond_de_Belamy 五年前,Generative Adversarial Networks(GANs)在深度学习领域掀起了一场革命.这场革命产生了一些重大的技术突破.Ian Goodfellow等人在"Generative Adversarial Networks"中提出了生成对抗网络.学术界和工业界都开始接受并欢迎GAN的到来.GAN的崛起不可避免. 首先,GAN最厉害的地方是它的学习性质是无监督的.GA…
[说在前面]本人博客新手一枚,象牙塔的老白,职业场的小白.以下内容仅为个人见解,欢迎批评指正,不喜勿喷![握手][握手] [再啰嗦一下]本文衔接上一个随笔:人工智能中小样本问题相关的系列模型演变及学习笔记(一):元学习.小样本学习 三.生成对抗网络 GAN 综述 说到小样本学习,就想说比较时髦的生成对抗网络GAN.别误会,生成对抗网络并不是只针对小样本生成,还有很多别的丰富应用. 1. GAN GANs是一种结构化的概率模型,由两个对立的模型组成:生成模型(G)用于捕获数据分布,判别模型(D)用…