论文信息 论文标题:Bootstrapped Representation Learning on Graphs论文作者:Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Rémi Munos, Petar Veličković, Michal Valko论文来源:2021, ArXiv论文地址:download 论文代码:download 1 介绍 研究目的:对比学习中不适用负样本. 本文贡献: 对图比学习不使用负样本 2…
Paper Information 论文标题:Contrastive Multi-View Representation Learning on Graphs论文作者:Kaveh Hassani .Amir Hosein Khasahmadi论文来源:2020, ICML论文地址:download论文代码:download Abstract 介绍了一种自监督的方法,通过对比图的结构视图来学习节点和图级别的表示.与视觉表示学习不同,对于图上的对比学习,将视图的数量增加到两个以上或对比多尺度编码并不…
论文信息 论文标题:Representation Learning on Graphs with Jumping Knowledge Networks论文作者:Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, Stefanie Jegelka论文来源:2018,ICML论文地址:download论文代码:download 1 Introduction 最近,图表示学习提出了基于 "邻域聚…
4 Dynamic Graph Representation Learning Via Self-Attention Networks link:https://arxiv.org/abs/1812.09430 Abstract 提出了在动态图上使用自注意力 Conclusion 本文提出了使用自注意力的网络结构用于在动态图学习节点表示.具体地说,DySAT使用(1)结构邻居和(2)历史节点表示上的自我注意来计算动态节点表示,虽然实验是在没有节点特征的图上进行的,但DySAT可以很容易地推广到特…
总的来说这篇论文提出了ResNet架构,让训练非常深的神经网络(NN)成为了可能. 什么是残差? "残差在数理统计中是指实际观察值与估计值(拟合值)之间的差."如果回归模型正确的话, 我们可以将残差看作误差的观测值."更准确地,假设我们想要找一个 xx,使得 f(x)=bf(x)=b,给定一个 xx 的估计值 x0x0,残差(residual)就是 b−f(x0)b−f(x0),同时,误差就是 x−x0x−x0 为什么需要堆叠更深的NN呢? 论文阐述道 -- 深度神经网络自然…
论文信息 论文标题:Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization论文作者:Wei Dong, Junsheng Wu, Yi Luo, Zongyuan Ge, Peng Wang论文来源:CVPR 2022论文地址:download论文代码:download 1 摘要 在本工作中,我们提出了一种简单而有效的自监督节点表示学习策略,通过直接最大化节点的…
论文信息 论文标题:Graph Representation Learning via Contrasting Cluster Assignments论文作者:Chun-Yang Zhang, Hong-Yu Yao, C. L. Philip Chen, Fellow, IEEE and Yue-…
12 Inductive Representation Learning on Temporal Graphs link:https://arxiv.org/abs/2002.07962 本文提出了时间图注意(TGAT)层,以有效地聚合时间-拓扑邻域特征,并学习时间-特征之间的相互作用.对于TGAT,本文采用自注意机制作为构建模块,并基于调和分析中的经典Bochner定理(又是没见过的定理QAQ)发展了一种新的函数时间编码技术. Conclusion 本文提出了一种新颖的时间感知图注意网络,用于…
Paper Information Title:Simple Unsupervised Graph Representation LearningAuthors: Yujie Mo.Liang Peng.Jie Xu, Xiaoshuang Shi.Xiaofeng ZhuSources:2022 AAAIPaper:downloadCode:download Abstract 作者提出了一种简单的无监督图表示学习方法来进行有效和高效的对比学习.具体而言,通过构造多重损失探索结构信息与邻域信息之…
论文信息 论文标题:Automated Self-Supervised Learning for Graphs论文作者:Wei Jin, Xiaorui Liu, Xiangyu Zhao, Yao Ma, Neil Shah, Jiliang Tang论文来源:2022, ICLR论文地址:download论文代码:download Abstract 研究现状: 不同的代理任务对不同数据集的下游任务的影响不同,表明代理任务的使用对于图的自监督学习至关重要: 当前工作大多基于单一的代理任务: 本…