Graph Transformer Networks 论文分享】的更多相关文章

论文地址:https://arxiv.org/abs/1911.06455 实现代码地址:https://github.com/ seongjunyun/Graph_Transformer_Networks 看分享之前可以把论文读一遍,代码看一看,这样必定会事半功倍! ### 论文目的是通过构造GTN(Graph Transformer Networks),来学习到异构网络中有效的节点表示. ### 其他现有方法(GNNs)的缺点: 1. 对于异构图,由于GNN只用于处理同构图,因此效果不好.…
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD论文地址:download 论文代码:download 1 Introduction 问题引入: 图卷积是领域聚合的代表,这些邻域聚合方法中的一层只考虑近邻,当进一步深入以实现更大的接受域时,性能会下降,这种性能恶化归因于过平滑问题( over-smoothing),即当感受域增大时,在传播和更新过…
论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou Huang, Dinghao Wu论文来源:2021, arXiv论文地址:download 论文代码:download 1 Introduction 现有的方法侧重于从全局的角度来增强图形数据,主要分为两种类型: str…
论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxiang Zhao, Xiang Zhang, Suhang Wang论文来源:2021, WSDM论文地址:download 论文代码:download 1 Introduction 节点分类受限与不同类的节点数量不平衡,本文提出过采样方法解决这个问题. 图中类不平衡的例子:   图中:每个蓝色节点…
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, Fuhai Li, Anindya Sarkar, Muhan Zhang论文来源:2022,arXiv论文地址:download 论文代码:download 1 Introduction 本文工作: 1)正式区分了 K-hop 邻居的两个不同的内核,它们在以前的工作中经常被滥用.一种是基于图扩散(…
论文信息 论文标题:Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks论文作者:Mingqi Yang, Yanming Shen, Heng Qi, Baocai Yin论文来源:2021, WWW论文地址:download 论文代码:download 1 Abstract GNN 应该能够有效地提取与任务相关的结构,并且对无关的部分保持不变. 本文提出的解决方法:从原始图的子图序列中学习图的表示,以更好…
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Graham W. Taylor, Mohamed R. Amer论文来源:2019,NeurIPS论文地址:download 论文代码:download 1 Introduction 本文关注将注意力 GNNs 推广到更大.更复杂或有噪声的图.作者发现在某些情况下,注意力机制的影响可以忽略不计,甚至有害…
论文信息 论文标题:How Attentive are Graph Attention Networks?论文作者:Shaked Brody, Uri Alon, Eran Yahav论文来源:2022,ICLR论文地址:download 论文代码:download 1 Abstract 在 GAT中,每个节点都为它的邻居给出自己的查询表示.然而,在本文中证明了 GAT 计算的是一种非常有限的注意类型:注意力分数在查询节点上是无条件的.本文将其定义为静态注意力,并提出了相应的动态注意力 GATv…
论文信息 论文标题:Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks论文作者:Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang,Sophia Ananiadou论文来源:2021,EMNLP 论文地址:download 论文代码:download Background 传播结构为谣言的真假…
Spatial Transformer Networks 简介 本文提出了能够学习feature仿射变换的一种结构,并且该结构不需要给其他额外的监督信息,网络自己就能学习到对预测结果有用的仿射变换.因为CNN的平移不变性等空间特征一定程度上被pooling等操作破坏了,所以,想要网络能够应对平移的object或者其他仿射变换后的object有更好的表示,就需要设计一种结构来学习这种变换,使得作用了这种变换后的feature能够能好的表示任务. 网络结构 上图中U表示输入feature map,通…