SIFT特征提取分析(转载)】的更多相关文章

SIFT特征提取分析 sift 关键点,关键点检测 读'D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J],IJCV,2004' 笔记 关键点是指图像中或者视觉领域中明显区别于其周围区域的地方,这些关键点对于光照,视角相对鲁棒,所以对图像关键点提取特征的好坏直接影响后续分类.识别的精度. 特征描述子就是对关键点提取特征的过程,应该具备可重复性.可区分性.准确性.有效性和鲁棒性. SIFT(Scale-I…
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果.整个算法分为以下几个部分: 1. 构建尺度空间 这是一个初始化操作,尺度空间…
转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度…
Surf特征提取分析 Surf Hessian SIFT 读"H.Bay, T. Tuytelaars, L. V. Gool, SURF:Speed Up Robust Features[J],ECCV,2006"笔记 SURF:Speed Up Robust Features,加速鲁棒特征. 我觉得SURF是SIFT特征的一种近似计算,在相似性能甚至更好性能的同时提高了算法的速度.这些近似体现在 在尺度空间中,使用box filtes与原图像卷积,而不是使用DoG算子 确定关键点方…
opencv中sift特征提取的步骤 使用SiftFeatureDetector的detect方法检测特征存入一个向量里,并使用drawKeypoints在图中标识出来 SiftDescriptorExtractor 的compute方法提取特征描述符,特征描述符是一个矩阵 使用匹配器matcher对描述符进行匹配,匹配结果保存由DMatch的组成的向量里 设置距离阈值,使得匹配的向量距离小于最小距离的2被才能进入最终的结果,用DrawMatch可以显示 代码 // 使用Flann进行特征点匹配…
背景引言 方向梯度直方图(Histogram of Oriented Gradient,HOG)是用于在计算机视觉和图像处理领域,目标检测的特征描述子.该项技术是用来计算图像局部出现的方向梯度次数或信息进行计数.此种方法跟边缘方向直方图.尺度不变特征变换以及形状上下文方法有很多相似.但与它们的不同点是:HOG的计算基于一致空间的密度矩阵来提高准确率.即:在一个网格密集的大小统一的细胞单元上计算,而且为了提高性能,还采用了重叠的局部对比度归一化技术.HoG特征与SVM分类器结合,已经被广泛应用于图…
转载:http://blog.csdn.net/avan_lau/article/details/6958497 最近在分析软件中画线效率问题,发现在画一些标志性符号的方法,存在瓶颈,占用较大的时间.而画这些符号的,则最终是调用TBitMap32.TextOut.大致状况如下: TextOutSignWithAngle为画特殊符号方法,中间调用了API:GetObject用于获取LogFont信息,然后填充logFont角度信息,再调用API:CreateFontIndirect,设置创建后的字…
原文链接:http://www.cnblogs.com/cfantaisie/archive/2011/06/14/2080917.html   主要步骤 1).尺度空间的生成: 2).检测尺度空间极值点: 3).精确定位极值点: 4).为每个关键点指定方向参数: 5).关键点描述子的生成. L(x,y,σ), σ= 1.6 a good tradeoff     D(x,y,σ), σ= 1.6 a good tradeoff 关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的.在 …
声明:这一篇文章是转载过来的,转载地址忘记了,原作者如果看到了,希望能够告知一声,我好加上去! easyloader模块是用来加载jquery easyui的js和css文件的,而且它可以分析模块的依赖关系,先加载依赖项.模块加载好了会调用parse模块来解析页面.把class是easyui开头的标签都转化成easyui的控件. 先看Demo1例子,再分析源代码. <!DOCTYPE html> <html> <head> <title>easyloader…
https://www.jianshu.com/p/6284f57664b9 目前对于variant进行注释的软件主要有4个: Annovar, SnpEff, VEP(variant Effect Predictor), Oncotator, 选择合适的软件注释variants对于下游分析是很关键的, 今天我们来比较下这4种软件在variants 注释上的差异,进而帮助我们选择更合适的注释软件. 首先简要介绍下这4个软件的一些特点: Oncotator: 主要用于癌症特异性突变位点的注释,下面…