woe_iv原理和python代码建模】的更多相关文章

python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share  1.自变量进行筛选 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变…
链表是一种基础的数据结构,也是算法学习的重中之重.其中单链表反转是一个经常会被考察到的知识点. 单链表反转是将一个给定顺序的单链表通过算法转为逆序排列,尽管听起来很简单,但要通过算法实现也并不是非常容易.现在来给大家简单介绍一下单链表反转算法实现的基本原理和python代码实现. 算法基本原理及python代码1.方法一:三个指针遍历反转算法思想:使用3个指针遍历单链表,逐个链接点进行反转. (1)分别用p,q两个指针指定前后两个节点.其中p.next = q (2)将p指针指向反方向. (3)…
假设我们已知坐标 (x0, y0) 与 (x1, y1),要得到 [x0, x1] 区间内某一位置 x 在直线上的值.根据图中所示,我们得到 由于 x 值已知,所以可以从公式得到 y 的值 已知 y 求 x 的过程与以上过程相同,只是 x 与 y 要进行交换. python的代码实现: import matplotlib.pyplot as plt """ @brief: 计算n阶差商 f[x0, x1, x2 ... xn] @param: xi 所有插值节点的横坐标集合…
k-means:是无监督的分类算法 k代表要分的类数,即要将数据聚为k类; means是均值,代表着聚类中心的迭代策略. k-means算法思想: (1)随机选取k个聚类中心(一般在样本集中选取,也可以自己随机选取); (2)计算每个样本与k个聚类中心的距离,并将样本归到距离最小的那个类中; (3)更新中心,计算属于k类的样本的均值作为新的中心. (4)反复迭代(2)(3),直到聚类中心不发生变化,后者中心位置误差在阈值范围内,或者达到一定的迭代次数. python实现: k-means简单小样…
(1)感知器模型 感知器模型包含多个输入节点:X0-Xn,权重矩阵W0-Wn(其中X0和W0代表的偏置因子,一般X0=1,图中X0处应该是Xn)一个输出节点O,激活函数是sign函数. (2)感知器学习规则 输入训练样本X和初始权重向量W,将其进行向量的点乘,然后将点乘求和的结果作用于激活函数sign(),得到预测输出O,根据预测输出值和目标值之间的差距error,来调整初始化权重向量W.如此反复,直到W调整到合适的结果为止. (3)算法的原始形式 (4)Python代码实现 import nu…
原理 对数损失, 即对数似然损失(Log-likelihood Loss), 也称逻辑斯谛回归损失(Logistic Loss)或交叉熵损失(cross-entropy Loss), 是在概率估计上定义的.它常用于(multi-nominal, 多项)逻辑斯谛回归和神经网络,以及一些期望极大算法的变体. 可用于评估分类器的概率输出. 对数损失通过惩罚错误的分类,实现对分类器的准确度(Accuracy)的量化. 最小化对数损失基本等价于最大化分类器的准确度.为了计算对数损失, 分类器必须提供对输入…
1. 普通筛选(常用于求解单个素数问题) 自然数中,除了1和它本身以外不再有其他因数. import math def func_get_prime(n): func = lambda x: not [x%i for i in range(2, int(math.sqrt(x)) + 1) if x%i ==0] return filter(func, range(2,n+1)) print(list(func_get_prime(100))) 2. Wilson定理(常用与数比较小的情况) 对…
Stacking集成学习在各类机器学习竞赛当中得到了广泛的应用,尤其是在结构化的机器学习竞赛当中表现非常好.今天我们就来介绍下stacking这个在机器学习模型融合当中的大杀器的原理.并在博文的后面附有相关代码实现. 总体来说,stacking集成算法主要是一种基于"标签"的学习,有以下的特点: 用法:模型利用交叉验证,对训练集进行预测,从而实现二次学习 优点:可以结合不同的模型 缺点:增加了时间开销,容易造成过拟合 关键点:模型如何进行交叉训练? 下面我们来看看stacking的具体…
iOS开发UI篇—程序启动原理和UIApplication   一.UIApplication 1.简单介绍 (1)UIApplication对象是应用程序的象征,一个UIApplication对象就代表一个应用程序. (2)每一个应用都有自己的UIApplication对象,而且是单例的,如果试图在程序中新建一个UIApplication对象,那么将报错提示. (3)通过[UIApplicationsharedApplication]可以获得这个单例对象 (4) 一个iOS程序启动后创建的第一…
一个 11 行 Python 代码实现的神经网络 2015/12/02 · 实践项目 · 15 评论· 神经网络 分享到:18 本文由 伯乐在线 - 耶鲁怕冷 翻译,Namco 校稿.未经许可,禁止转载!英文出处:iamtrask.欢迎加入翻译组. 概要:直接上代码是最有效的学习方式.这篇教程通过由一段简短的 python 代码实现的非常简单的实例来讲解 BP 反向传播算法. 代码如下:   X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ]) y…