第二章 置信区间估计 估计量和估计值的写法? 估计值希腊字母上边有一个hat 点估计中矩估计的原理? 用样本矩来估计总体矩,用样本矩的连续函数来估计总体矩的连续函数,这种估计法称为矩估计法.Eg:如果一阶矩则样本均值估计总体均值 公式化之后的表达: 其中的μ1的表达式: 矩估计和最大似然估计最终估计的特点是什么? 二项分布的均值两种估计都相同,正态分布的均值两种估计都相同.但是其他分布仍存在不同的现象. 无偏性是什么? 估计值的均值与总体均值相同,除中间值之外的部分是随机误差. 均值的无偏性特殊…
转载声明:本文为转载文章,发表于nebulaf91的csdn博客.欢迎转载,但请务必保留本信息,注明文章出处. 原文作者: nebulaf91 原文原始地址:http://blog.csdn.net/u011508640/article/details/72815981 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两…
生物统计与实验设计-统计学基础-2&区间估计-1 正态分布参数:均值和方差 其中,选择1d是因为好算:通常,95%区分大概率事件和小概率事件, 当总体是正态分布时,可以利用常用抽样分布估计出样本参数: 抽样分布是样本估计量是样本的一个函数,在统计学中称作统计量(这就是说,统计量由样本值计算得到),因此抽样分布也是指统计量的分布.以下是当总体满足正态分布时,样本均值也满足正态分布(抽样分布是样本均值的分布,此处是正态分布)样本均值的均值与方差和总体参数之间的关系: 如上式,若得到一次实验的样本,样…
1) 极/最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”.例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,那么有…
1) 最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即"模型已定,参数未知". 例如,我们知道这个分布是正态分布,但是不知道均值和方差:或者是二项分布,但是不知道均值. 最大似然估计(MLE,Maximum Likelihood Estimation)就可以用来估计模型的参数.MLE的目标是找出一组参数,使得模型产生出观测数据的概率最大: 其中就是似然函数,表示在参数下出现观测数据的概率.我们假设每个观测数据是独立的,…
最大似然估计 MLE 给定一堆数据,假如我们知道它是从某一种分布中随机取出来的,可是我们并不知道这个分布具体的参,即“模型已定,参数未知”. 例如,对于线性回归,我们假定样本是服从正态分布,但是不知道均值和方差:或者对于逻辑回归,我们假定样本是服从二项分布,但是不知道均值,逻辑回归公式得到的是因变量y的概率P = g(x), x为自变量,通过逻辑函数得到一个概率值,y对应离散值为0或者1,Y服从二项分布,误差项服从二项分布,而非高斯分布,所以不能用最小二乘进行模型参数估计,可以用极大似然估计来进…
最大似然估计与最小二乘估计的区别 标签(空格分隔): 概率论与数理统计 最小二乘估计 对于最小二乘估计来说,最合理的参数估计量应该使得模型能最好地拟合样本数据,也就是估计值与观测值之差的平方和最小. 设Q表示平方误差,\(Y_{i}\)表示估计值,\(\hat{Y}_{i}\)表示观测值,即\(Q = \sum_{i=1}^{n}(Y_{i} - \hat{Y}_{i})^{2}\) 最大似然估计 对于最大似然估计来说,最合理的参数估计量应该使得从模型中抽取该n组样本的观测值的概率最大,也就是概…
1.前言 之前我一直对于“最大似然估计”犯迷糊,今天在看了陶轻松.忆臻.nebulaf91等人的博客以及李航老师的<统计学习方法>后,豁然开朗,于是在此记下一些心得体会. “最大似然估计”(Maximum Likelihood Estimation, MLE)与“最大后验概率估计”(Maximum A Posteriori Estimation,MAP)的历史可谓源远流长,这两种经典的方法也成为机器学习领域的基础被广泛应用. 有趣的是,这两种方法还牵扯到“频率学派”与“贝叶斯学派”的派别之争,…
[机器学习基本理论]详解最大似然估计(MLE).最大后验概率估计(MAP),以及贝叶斯公式的理解 https://mp.csdn.net/postedit/81664644 最大似然估计(Maximum likelihood estimation, 简称MLE)和最大后验概率估计(Maximum a posteriori estimation, 简称MAP)是很常用的两种参数估计方法,如果不理解这两种方法的思路,很容易弄混它们. 下文将详细说明MLE和MAP的思路与区别.先讲解MLE的相应知识.…
先不要想其他的,首先要在大脑里形成概念! 最大似然估计是什么意思?呵呵,完全不懂字面意思,似然是个啥啊?其实似然是likelihood的文言翻译,就是可能性的意思,所以Maximum Likelihood可以直接叫做最大可能性估计,这就好理解了,就是要求出最大的可能性(下的那个参数). 一些最基本的概念:总体X,样本x,分布P(x:θ),随机变量(连续.离散),模型参数,联合分布,条件分布 而似然函数在形式上,其实就是样本的联合密度:L(θ)= L(x1,x2,-,xn:θ)= ΠP(xi:θ)…