NMS 原理 了解】的更多相关文章

NMS 原理:对于Bounding Box的列表B及其对应的置信度S,采用下面的计算方式.选择具有最大score的检测框M,将其从B集合中移除并加入到最终的检测结果D中.通常将B中剩余检测框中与M的IoU大于阈值Nt的框从B中移除.重复这个过程,直到B为空.重叠率(重叠区域面积比例IOU)阈值,常用的阈值是 0.3 ~ 0.5 .其中用到排序,可以按照右下角的坐标排序或者面积排序,也可以是通过SVM等分类器得到的得分或概率,R-CNN中就是按得分进行的排序.就像上面的图片一样,定位一个车辆,最后…
​  前言  本文介绍了NMS的应用场合.基本原理.多类别NMS方法和实践代码.NMS的缺陷和改进思路.介绍了改进NMS的几种常用方法.提供了其它不常用的方法的链接. 本文很早以前发过,有个读者评论说没有介绍多类别NMS让他不满意,因此特来补充.顺便补充了NMS的缺点和改进思路. 欢迎关注公众号CV技术指南,专注于计算机视觉的技术总结.最新技术跟踪.经典论文解读.CV招聘信息. Non-Maximum Suppression(NMS)非极大值抑制.从字面意思理解,抑制那些非极大值的元素,保留极大…
概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数.但是滑动窗口会导致很多…
转自:https://www.cnblogs.com/makefile/p/nms.html 概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检…
非极大值抑制(Non-Maximum Suppression,NMS)   概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提…
Non-Maximum Suppression,NMS非极大值抑制概述非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索.这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小.这里不讨论通用的NMS算法(参考论文<Efficient Non-Maximum Suppression>对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的.例如在行人检测中,滑动窗口经提取特征,经分…
一.Faster-RCNN基本结构 该网络结构大致分为三个部分:卷积层得到高位图像特征feature maps.Region Proposal Network得到候选边框.classifier识别出物体及得到准确bounding box. 二.feature maps 最后一层卷积层输出. 三.RPN 1.RPN(Region Proposal Networks) feature maps再以3x3的卷积核进行卷积得到256xHxW的高维特征图,每个高维像素点对应原图9个anchor boxes…
MTCNN pytorch版本的实现 TropComplique/mtcnn-pytorch https://github.com/TropComplique/mtcnn-pytorch MTCNN实现流程 https://blog.csdn.net/autocyz/article/details/82799529 MTCNN 论文预测部分的 PyTorch 实现 https://github.com/foamliu/MTCNN faciallab/FaceDetector https://gi…
20190618 截止今日,学习了MTCNN预测部分的内容,包括三个网络输入输出之类的东西. 之后需要进一步学习的,NMS原理鞋机,MTCNN训练过程细节,损失函数细节…
1.NMS的原理 NMS(Non-Maximum Suppression)算法本质是搜索局部极大值,抑制非极大值元素.NMS就是需要根据score矩阵和region的坐标信息,从中找到置信度比较高的bounding box.NMS是大部分深度学习目标检测网络所需要的,大致算法流程为: 1.对所有预测框的置信度降序排序 2.选出置信度最高的预测框,确认其为正确预测,并计算他与其他预测框的IOU 3.根据2中计算的IOU去除重叠度高的,IOU>threshold就删除 4.剩下的预测框返回第1步,直…