https://www.luogu.com.cn/problem/P3389 主元消元法[模板] 高斯消元是解决多元线性方程组的方法,再学习它之前,先引入一个东西--行列式 行列式的性质: 这里我们只说其中的两条: ①行列式中的一行,加上另一行的\(k\)倍,行列式的值不变 ②交换行列式的两行,行列式的值会变为原来的相反数 每一个有唯一解的线性方程,都拥有一个与其对应的行列式 //如果想详细学习行列式,可以自行上网百度~ 目的:为了方便求解,利用①性质,我们可以把它消成上三角行列式(矩阵的对角线…
/* 高斯消元模板题 n维球体确定圆心必须要用到n+1个点 设圆心坐标(x1,x2,x3,x4...xn),半径为C 设第i个点坐标为(ai1,ai2,ai3,,,ain)那么对应的方程为 (x1-ai1)^2+(x2-ai2)^2+...+(xn-ain)^2=C*C 如此可列出n+1个方程但是由于有 xi^2 在,无法高斯消元 所以将这n+1个方程上下相减,得 2(x[1]*a[i][1]-x[1]a[i+1][1])+(a[i][1]^2-a[i+1][1]^2)...=0 那么化简后就是…
http://acm.hdu.edu.cn/showproblem.php?pid=3359 题目的意思是,由矩阵A生成矩阵B的方法是: 以a[i][j]为中心的,哈曼顿距离不大于dis的数字的总和 / 个数,就是矩阵B的b[i][j] 现在给出B,要求A 那么我们设A矩阵为a[1][1], a[1][2], a[1][3]..... 那么对于每一个b[i][j]我们有b[i][j] = (a[1][1] + a[1][2] + ... + ) / cnt 所以这样可以建议一条方程,然后guas…
写的很好,注释很详细,很全面. 原blog地址:http://www.cnblogs.com/kuangbin/archive/2012/09/01/2667044.html #include<stdio.h> #include<algorithm> #include<iostream> #include<string.h> #include<math.h> using namespace std; ; int a[MAXN][MAXN];//增…
链接: https://www.luogu.org/problem/P3389 题意: 给定一个线性方程组,对其求解 思路: 高斯消元,从第一项消到最后一项,消成一个上三角矩阵.再从最后一项依次向上回带. 在消每一项的时候找到系数最大的一项开始消,将其系数置位1,再向下消,具体做法百度太多了. 代码: #include <bits/stdc++.h> using namespace std; double Map[110][110]; double ans[110]; double eps =…
title: [线性代数]2-3:消元与矩阵的关系(Elimination and Matrix) toc: true categories: Mathematic Linear Algebra date: 2017-08-31 17:55:10 keywords: Elimination Matrix Matrix Multiplication Row Exchange Augmented Matrix Abstract: 用大学的方法消元,也就是整个消元过程矩阵化,引出矩阵乘法 Keywor…
; //高斯消元模板 //----------------------------------------------------------------------------------- //把对应得系数矩阵化为对角矩阵,然后直接回代即可 +; +; //a为增广矩阵,ans为一组特解,n为未知数个数,free_x[i]=false表示该变量为自由变量 double a[maxn][maxm],ans[maxn]; int n; bool free_x[maxn]; int Gauss()…
矩阵归零消减序列和 总时间限制: 1000ms 内存限制: 65536kB 描述 给定一个n*n的矩阵( <= n <= ,元素的值都是非负整数).通过n-1次实施下述过程,可把这个矩阵转换成一个1*1的矩阵.每次的过程如下: 首先对矩阵进行行归零:即对每一行上的所有元素,都在其原来值的基础上减去该行上的最小值,保证相减后的值仍然是非负整数,且这一行上至少有一个元素的值为0. 接着对矩阵进行列归零:即对每一列上的所有元素,都在其原来值的基础上减去该列上的最小值,保证相减后的值仍然是非负整数,且…
public class Test24 {    public static void main(String[] args) {        // 鸡蛋0.1元一个,鸭蛋3元一个,鹅蛋6元一个.求一百元买一百个蛋.        for (int i = 1; i <= 1000; i++) {            for (int j = 1; j <= 100 / 3; j++) {                for (int k = 1; k <= 100 / 6; k+…
题目链接 高斯消元其实是个大模拟qwq 所以就着代码食用 首先我们读入 ;i<=n;++i) ;j<=n+;++j) scanf("%lf",&s[i][j]); 读入肯定没什么问题(不过我在这卡了一分多钟) 然后我们要进行消元操作 所谓消元操作其实就是对于输入的矩阵 比如说 9 3 2 2 1 4 7 3 1 3 4 5 进行一番乱搞,使得第当前枚举的(比如说枚举第i行第i列)s[i][j]系数变成1. 实际上就是整行同除qwq 比如我们除完第一行第一列的之后,矩…