【NOIP2012】疫情传递】的更多相关文章

Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增) Description H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树, 1 号城市是首都, 也是树中的根节点. H 国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散到边境 城市(叶子节点所表示的城市),决定动用军队在一些城市建立检查点,使得从首都到边境 城市的每一条路径上都至少有一个检查点,边境城市也可以建立检查点.但特别要注意的是, 首都是不能建立检查点的. 现在,在 H…
题面:[NOIP2012]疫情控制 题解: 大体思路很好想,但是有个细节很难想QAQ 首先要求最大时间最小,这种一般都是二分,于是我们二分一个时间,得到一个log. 然后发现一个军队,越往上走肯定可以控制的叶节点越多,因此我们在时间范围内尽量向上走,又得到一个log了. 如果一个军队走到根后还有多余时间,那它就有可能走到根的其他儿子去帮助其他子树. 然后为了尽可能覆盖多的子树,显然应该要用剩余时间少的军队,对应走过去代价小的子树,所以sort一下就可以了? 然而还有一种情况,那就是一个点从它的子…
NOIP2012 疫情控制 题解(LuoguP1084) 不难发现,如果一个点向上移动一定能控制更多的点,所以可以二分时间,判断是否可行. 但根节点不能不能控制,存在以当前时间可以走到根节点的点,可使向下走到深度为2的节点控制 其他点,此时又可以进行另一个贪心,优先选择走到根节点还能再走的时间小的去控制深度一到二之间边权较小的. 某大佬有更加详尽的讲解,参见这里 #include<iostream> #include<cstdio> #include<cstring>…
题解 这题是真的烦... 越来越心疼2012年的dalao们了[不过好像dalao们都不需要本蒟蒻的心疼2333] 其实这题还有点半懂不懂... 所以把洛谷上一个比较好的题解粘过来记忆一下233 1.预处理倍增 我们会发现,离根节点越近的节点,控制的节点更多.所以由贪心的思想,所有的军队都要尽可能地往根节点走. > "往上提"类型问题一般使用倍增优化.--xzy神犇 xzy神犇的博客:k-xzy.cf 好大的,那么我们可以dfs一遍,将倍增要用的一些值都处理好(见代码) 2.二分…
[问题描述] H国有n个城市,这n个城市用n-1条双向道路相互连通构成一棵树,1号城市是首都,也是树中的根节点. H国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散到边境城市(叶子节点所表示的城市),决定动用军队在一些城市建立检查点,使得从首都到边境城市的每一条路径上都至少有一个检查点,边境城市也可以建立检查点.但特别要注意的是,首都是不能建立检查点的. 现在,在H国的一些城市中已经驻扎有军队,且一个城市可以驻扎多个军队.一支军队可以在有道路连接的城市间移动,并在除首都以外的…
Description H国有n个城市,这n个城市用n-1条双向道路相互连通构成一棵树,1号城市是首都,也是树中的根节点. H国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散到边境城市(叶子节点所表示的城市),决定动用军队在一些城市建立检查点,使得从首都到边境城市的每一条路径上都至少有一个检查点,边境城市也可以建立检查点.但特别要注意的是,首都是不能建立检查点的. 现在,在H国的一些城市中已经驻扎有军队,且一个城市可以驻扎多个军队.一支军队可以在有道路连接的城市间移动,并在除…
H 国有n个城市,这 n个城市用n-1条双向道路相互连通构成一棵树,1号城市是首都,也是树中的根节点. H国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散到边境城市(叶子节点所表示的城市),决定动用军队在一些城市建立检查点,使得从首都到边境城市的每一条路径上都至少有一个检查点,边境城市也可以建立检查点.但特别要注意的是,首都是不能建立检查点的. 现在,在 H 国的一些城市中已经驻扎有军队,且一个城市可以驻扎多个军队.一支军队可以在有道路连接的城市间移动,并在除首都以外的任意一…
Description H国有n个城市,这n个城市用n-1条双向道路相互连通构成一棵树,1号城市是首都,也是树中的根节点. H国的首都爆发了一种危害性极高的传染病.当局为了控制疫情,不让疫情扩散到边境城市(叶子节点所表示的城市),决定动用军队在一些城市建立检查点,使得从首都到边境城市的每一条路径上都至少有一个检查点,边境城市也可以建立检查点.但特别要注意的是,首都是不能建立检查点的. 现在,在H国的一些城市中已经驻扎有军队,且一个城市可以驻扎多个军队.一支军队可以在有道路连接的城市间移动,并在除…
好久没更,强迫自己写一篇. 神 tm 大预言家出的题 注意到如果 \(x\) 小时可以控制住疫情,则 \(\forall x'>x\) 必然也可以控制住疫情,显然答案具有单调性,可以二分答案. 考虑对于当前二分到的答案 \(mid\) 如何 check.根据贪心的策略,我们需要让所有军队的深度尽量小,于是可以考虑每一支军队向上跳的过程,这一步可以通过倍增预处理在 \(\log\) 时间实现. 对于在 \(mid\) 时间内无论如何也跳不到根的子节点的军队,就原地(指最后跳到的地方)驻扎,答案最优…
先二分出一个时间,把每个军队倍增往上跳到不能再跳 然后如果它能到1号点,就记下来它跳到1号点后剩余的时间:如果不能,就让它就地扎根,记一记它覆盖了哪些叶节点(我在这里用了dfs序+差分,其实直接dfs就行..) 然后对于那些叶节点没有被覆盖完全的(父亲为1号点的)子树,肯定需要一些已经到1号点的军队来走过去 如果它离1距离越远,肯定就希望用剩余时间越多的军队来走,除非是有一个剩余时间更少的军队本来就在这个子树里 看一看能不能符合要求的就行了 然而有很多要注意的地方: 0.一个军队只能用一次...…