本文亮点: 将用于自然语言处理的CNN架构,从keras0.3.3搬运到了keras2.x,强行练习了Sequential+Model的混合使用,具体来说,是Model里嵌套了Sequential. 本文背景: 暑假在做一个推荐系统的小项目,老师让我们搜集推荐系统领域Top5的算法和模型,要求结合深度学习. 我和小伙伴选择了其中的两篇文献深入研究,我负责跑通文献Convolutional Matrix Factorization for Document Context-Aware Recomm…
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输入图片大小(降低了图片的质量)也使得神经网络可以经受一点图片平移,不受位置的影响(池化后相当于把图片上的点平移了)正如卷积神经网络一样,在池化层中的每个神经元被连接到上面一层输出的神经元,只对应一小块感受野的区域.我们必须定义大小,步长,padding类型池化神经元没有权重值,它只是聚合输入根据取最…
JWPL处理维基百科数据用于NLP 处理zhwiki JWPL是一个Wikipedia处理工具,主要功能是将Wikipedia dump的文件经过处理.优化导入mysql数据库,用于NLP过程.以下以zhwiki-20170201为例. JWPLDataMachine用以处理wiki dump数据,最终将数据导入mysql,用于NLP,表结构不同于wkipedia官方的表,这里的表是针对于NLP目的的.处理步骤如下: 数据格式转换.处理zhwiki dump的文件,转换为tsv格式数据,以便用m…
前言: 原文链接:基于CNN的目标检测发展过程       文章有大量修改,如有不适,请移步原文. 参考文章:图像的全局特征--用于目标检测 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模型的 Recall.传统机器学习方法应用,使用全局特征+级联分类器的思路仍然被持续使用.常用的级联方法有haar/LBP特征+Adaboost决策树分类器级联检测 和HOG特征 + SVM分类器级联检测. DPM方法为08年提出的一种可进行级…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/269 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 前言 卷积神经网络的结构优化和深度加深,带来非常显著的图像识别效果提升,但同时也带来了高计算复杂度和更长的计算时间,实际工程应用中对效率的考虑也很多,研究界与工业界近年都在努力「保持效果的情况下压缩…
原文链接:何恺明团队提出 Focal Loss,目标检测精度高达39.1AP,打破现有记录     呀 加入Facebook的何凯明继续优化检测CNN网络,arXiv 上发现了何恺明所在 FAIR 团队的最新力作:"Focal Loss for Dense Object Detection(用于密集对象检测的 Focal Loss 函数)". 孔涛博士在知乎上这么写道: 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模…
用CNN分类Mnist http://www.bubuko.com/infodetail-777299.html /DeepLearning Tutorials/keras_usage 提取出来的特征训练SVMhttp://www.bubuko.com/infodetail-792731.html ./dive_into _keras 自己动手写demo实现…
2017-08-21 这次的课程比较偏向实际的运用,介绍了当前几种比较主流的CNN网络: 主要是AlexNet,GoogleNet, VGG, ResNet 需要把课后习题做了才能更好的理解.…
有兴趣查看原文:YOLO详解 人眼能够快速的检测和识别视野内的物体,基于Maar的视觉理论,视觉先识别出局部显著性的区块比如边缘和角点,然后综合这些信息完成整体描述,人眼逆向工程最相像的是DPM模型. 目标的检测和定位中一个很困难的问题是,如何从数以万计的候选窗口中挑选包含目标物的物体.只有候选窗口足够多,才能保证模型的 Recall.传统机器学习方法应用,使用全局特征+级联分类器的思路仍然被持续使用.常用的级联方法有haar/LBP特征+Adaboost决策树分类器级联检测 和HOG特征 +…
本文翻译自A guide to receptive field arithmetic for Convolutional Neural Networks(可能需要FQ才能访问),方便自己学习和参考.若有侵权,还请告知. 感受野(receptive field)可能是卷积神经网络(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我们关注和学习.当前流行的物体识别方法的架构大都围绕感受野的设计.但是,当前并没有关于CNN感受野计算和可视化的完整指南.本教程…